Metamath Proof Explorer


Theorem lidl0

Description: Every ring contains a zero ideal. (Contributed by Stefan O'Rear, 3-Jan-2015) (Proof shortened by AV, 18-Apr-2025)

Ref Expression
Hypotheses rnglidl0.u
|- U = ( LIdeal ` R )
rnglidl0.z
|- .0. = ( 0g ` R )
Assertion lidl0
|- ( R e. Ring -> { .0. } e. U )

Proof

Step Hyp Ref Expression
1 rnglidl0.u
 |-  U = ( LIdeal ` R )
2 rnglidl0.z
 |-  .0. = ( 0g ` R )
3 ringrng
 |-  ( R e. Ring -> R e. Rng )
4 1 2 rnglidl0
 |-  ( R e. Rng -> { .0. } e. U )
5 3 4 syl
 |-  ( R e. Ring -> { .0. } e. U )