Description: Every ring contains a zero ideal. (Contributed by Stefan O'Rear, 3-Jan-2015) (Proof shortened by AV, 18-Apr-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rnglidl0.u | |- U = ( LIdeal ` R ) |
|
rnglidl0.z | |- .0. = ( 0g ` R ) |
||
Assertion | lidl0 | |- ( R e. Ring -> { .0. } e. U ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnglidl0.u | |- U = ( LIdeal ` R ) |
|
2 | rnglidl0.z | |- .0. = ( 0g ` R ) |
|
3 | ringrng | |- ( R e. Ring -> R e. Rng ) |
|
4 | 1 2 | rnglidl0 | |- ( R e. Rng -> { .0. } e. U ) |
5 | 3 4 | syl | |- ( R e. Ring -> { .0. } e. U ) |