Step |
Hyp |
Ref |
Expression |
1 |
|
lidlcl.u |
|- U = ( LIdeal ` R ) |
2 |
|
lidl0cl.z |
|- .0. = ( 0g ` R ) |
3 |
|
rlm0 |
|- ( 0g ` R ) = ( 0g ` ( ringLMod ` R ) ) |
4 |
2 3
|
eqtri |
|- .0. = ( 0g ` ( ringLMod ` R ) ) |
5 |
|
rlmlmod |
|- ( R e. Ring -> ( ringLMod ` R ) e. LMod ) |
6 |
|
simpr |
|- ( ( R e. Ring /\ I e. U ) -> I e. U ) |
7 |
|
lidlval |
|- ( LIdeal ` R ) = ( LSubSp ` ( ringLMod ` R ) ) |
8 |
1 7
|
eqtri |
|- U = ( LSubSp ` ( ringLMod ` R ) ) |
9 |
6 8
|
eleqtrdi |
|- ( ( R e. Ring /\ I e. U ) -> I e. ( LSubSp ` ( ringLMod ` R ) ) ) |
10 |
|
eqid |
|- ( 0g ` ( ringLMod ` R ) ) = ( 0g ` ( ringLMod ` R ) ) |
11 |
|
eqid |
|- ( LSubSp ` ( ringLMod ` R ) ) = ( LSubSp ` ( ringLMod ` R ) ) |
12 |
10 11
|
lss0cl |
|- ( ( ( ringLMod ` R ) e. LMod /\ I e. ( LSubSp ` ( ringLMod ` R ) ) ) -> ( 0g ` ( ringLMod ` R ) ) e. I ) |
13 |
5 9 12
|
syl2an2r |
|- ( ( R e. Ring /\ I e. U ) -> ( 0g ` ( ringLMod ` R ) ) e. I ) |
14 |
4 13
|
eqeltrid |
|- ( ( R e. Ring /\ I e. U ) -> .0. e. I ) |