| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lidlcl.u |  |-  U = ( LIdeal ` R ) | 
						
							| 2 |  | lidl0cl.z |  |-  .0. = ( 0g ` R ) | 
						
							| 3 |  | rlm0 |  |-  ( 0g ` R ) = ( 0g ` ( ringLMod ` R ) ) | 
						
							| 4 | 2 3 | eqtri |  |-  .0. = ( 0g ` ( ringLMod ` R ) ) | 
						
							| 5 |  | rlmlmod |  |-  ( R e. Ring -> ( ringLMod ` R ) e. LMod ) | 
						
							| 6 |  | simpr |  |-  ( ( R e. Ring /\ I e. U ) -> I e. U ) | 
						
							| 7 |  | lidlval |  |-  ( LIdeal ` R ) = ( LSubSp ` ( ringLMod ` R ) ) | 
						
							| 8 | 1 7 | eqtri |  |-  U = ( LSubSp ` ( ringLMod ` R ) ) | 
						
							| 9 | 6 8 | eleqtrdi |  |-  ( ( R e. Ring /\ I e. U ) -> I e. ( LSubSp ` ( ringLMod ` R ) ) ) | 
						
							| 10 |  | eqid |  |-  ( 0g ` ( ringLMod ` R ) ) = ( 0g ` ( ringLMod ` R ) ) | 
						
							| 11 |  | eqid |  |-  ( LSubSp ` ( ringLMod ` R ) ) = ( LSubSp ` ( ringLMod ` R ) ) | 
						
							| 12 | 10 11 | lss0cl |  |-  ( ( ( ringLMod ` R ) e. LMod /\ I e. ( LSubSp ` ( ringLMod ` R ) ) ) -> ( 0g ` ( ringLMod ` R ) ) e. I ) | 
						
							| 13 | 5 9 12 | syl2an2r |  |-  ( ( R e. Ring /\ I e. U ) -> ( 0g ` ( ringLMod ` R ) ) e. I ) | 
						
							| 14 | 4 13 | eqeltrid |  |-  ( ( R e. Ring /\ I e. U ) -> .0. e. I ) |