Metamath Proof Explorer


Theorem lidl1

Description: Every ring contains a unit ideal. (Contributed by Stefan O'Rear, 3-Jan-2015) (Proof shortened by AV, 18-Apr-2025)

Ref Expression
Hypotheses rnglidl0.u
|- U = ( LIdeal ` R )
rnglidl1.b
|- B = ( Base ` R )
Assertion lidl1
|- ( R e. Ring -> B e. U )

Proof

Step Hyp Ref Expression
1 rnglidl0.u
 |-  U = ( LIdeal ` R )
2 rnglidl1.b
 |-  B = ( Base ` R )
3 ringrng
 |-  ( R e. Ring -> R e. Rng )
4 1 2 rnglidl1
 |-  ( R e. Rng -> B e. U )
5 3 4 syl
 |-  ( R e. Ring -> B e. U )