| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rnglidl0.u |  |-  U = ( LIdeal ` R ) | 
						
							| 2 |  | rnglidl1.b |  |-  B = ( Base ` R ) | 
						
							| 3 |  | rlmlmod |  |-  ( R e. Ring -> ( ringLMod ` R ) e. LMod ) | 
						
							| 4 |  | rlmbas |  |-  ( Base ` R ) = ( Base ` ( ringLMod ` R ) ) | 
						
							| 5 | 2 4 | eqtri |  |-  B = ( Base ` ( ringLMod ` R ) ) | 
						
							| 6 |  | eqid |  |-  ( LSubSp ` ( ringLMod ` R ) ) = ( LSubSp ` ( ringLMod ` R ) ) | 
						
							| 7 | 5 6 | lss1 |  |-  ( ( ringLMod ` R ) e. LMod -> B e. ( LSubSp ` ( ringLMod ` R ) ) ) | 
						
							| 8 | 3 7 | syl |  |-  ( R e. Ring -> B e. ( LSubSp ` ( ringLMod ` R ) ) ) | 
						
							| 9 |  | lidlval |  |-  ( LIdeal ` R ) = ( LSubSp ` ( ringLMod ` R ) ) | 
						
							| 10 | 1 9 | eqtri |  |-  U = ( LSubSp ` ( ringLMod ` R ) ) | 
						
							| 11 | 8 10 | eleqtrrdi |  |-  ( R e. Ring -> B e. U ) |