| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lidlacs.b |  |-  B = ( Base ` W ) | 
						
							| 2 |  | lidlacs.i |  |-  I = ( LIdeal ` W ) | 
						
							| 3 |  | lidlval |  |-  ( LIdeal ` W ) = ( LSubSp ` ( ringLMod ` W ) ) | 
						
							| 4 | 2 3 | eqtri |  |-  I = ( LSubSp ` ( ringLMod ` W ) ) | 
						
							| 5 |  | rlmlmod |  |-  ( W e. Ring -> ( ringLMod ` W ) e. LMod ) | 
						
							| 6 |  | rlmbas |  |-  ( Base ` W ) = ( Base ` ( ringLMod ` W ) ) | 
						
							| 7 | 1 6 | eqtri |  |-  B = ( Base ` ( ringLMod ` W ) ) | 
						
							| 8 |  | eqid |  |-  ( LSubSp ` ( ringLMod ` W ) ) = ( LSubSp ` ( ringLMod ` W ) ) | 
						
							| 9 | 7 8 | lssacs |  |-  ( ( ringLMod ` W ) e. LMod -> ( LSubSp ` ( ringLMod ` W ) ) e. ( ACS ` B ) ) | 
						
							| 10 | 5 9 | syl |  |-  ( W e. Ring -> ( LSubSp ` ( ringLMod ` W ) ) e. ( ACS ` B ) ) | 
						
							| 11 | 4 10 | eqeltrid |  |-  ( W e. Ring -> I e. ( ACS ` B ) ) |