Description: A (left) ideal of a ring is the base set of the restriction of the ring to this ideal. (Contributed by AV, 17-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lidlssbas.l | |- L = ( LIdeal ` R ) |
|
| lidlssbas.i | |- I = ( R |`s U ) |
||
| Assertion | lidlbas | |- ( U e. L -> ( Base ` I ) = U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lidlssbas.l | |- L = ( LIdeal ` R ) |
|
| 2 | lidlssbas.i | |- I = ( R |`s U ) |
|
| 3 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 4 | 2 3 | ressbas | |- ( U e. L -> ( U i^i ( Base ` R ) ) = ( Base ` I ) ) |
| 5 | 3 1 | lidlss | |- ( U e. L -> U C_ ( Base ` R ) ) |
| 6 | dfss2 | |- ( U C_ ( Base ` R ) <-> ( U i^i ( Base ` R ) ) = U ) |
|
| 7 | 5 6 | sylib | |- ( U e. L -> ( U i^i ( Base ` R ) ) = U ) |
| 8 | 4 7 | eqtr3d | |- ( U e. L -> ( Base ` I ) = U ) |