| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lidlcl.u |
|- U = ( LIdeal ` R ) |
| 2 |
|
lidlcl.b |
|- B = ( Base ` R ) |
| 3 |
|
lidlmcl.t |
|- .x. = ( .r ` R ) |
| 4 |
|
ringrng |
|- ( R e. Ring -> R e. Rng ) |
| 5 |
4
|
adantr |
|- ( ( R e. Ring /\ I e. U ) -> R e. Rng ) |
| 6 |
|
simpr |
|- ( ( R e. Ring /\ I e. U ) -> I e. U ) |
| 7 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 8 |
1 7
|
lidl0cl |
|- ( ( R e. Ring /\ I e. U ) -> ( 0g ` R ) e. I ) |
| 9 |
5 6 8
|
3jca |
|- ( ( R e. Ring /\ I e. U ) -> ( R e. Rng /\ I e. U /\ ( 0g ` R ) e. I ) ) |
| 10 |
7 2 3 1
|
rnglidlmcl |
|- ( ( ( R e. Rng /\ I e. U /\ ( 0g ` R ) e. I ) /\ ( X e. B /\ Y e. I ) ) -> ( X .x. Y ) e. I ) |
| 11 |
9 10
|
sylan |
|- ( ( ( R e. Ring /\ I e. U ) /\ ( X e. B /\ Y e. I ) ) -> ( X .x. Y ) e. I ) |