| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lidlcl.u |  |-  U = ( LIdeal ` R ) | 
						
							| 2 |  | lidlcl.b |  |-  B = ( Base ` R ) | 
						
							| 3 |  | lidlmcl.t |  |-  .x. = ( .r ` R ) | 
						
							| 4 |  | ringrng |  |-  ( R e. Ring -> R e. Rng ) | 
						
							| 5 | 4 | adantr |  |-  ( ( R e. Ring /\ I e. U ) -> R e. Rng ) | 
						
							| 6 |  | simpr |  |-  ( ( R e. Ring /\ I e. U ) -> I e. U ) | 
						
							| 7 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 8 | 1 7 | lidl0cl |  |-  ( ( R e. Ring /\ I e. U ) -> ( 0g ` R ) e. I ) | 
						
							| 9 | 5 6 8 | 3jca |  |-  ( ( R e. Ring /\ I e. U ) -> ( R e. Rng /\ I e. U /\ ( 0g ` R ) e. I ) ) | 
						
							| 10 | 7 2 3 1 | rnglidlmcl |  |-  ( ( ( R e. Rng /\ I e. U /\ ( 0g ` R ) e. I ) /\ ( X e. B /\ Y e. I ) ) -> ( X .x. Y ) e. I ) | 
						
							| 11 | 9 10 | sylan |  |-  ( ( ( R e. Ring /\ I e. U ) /\ ( X e. B /\ Y e. I ) ) -> ( X .x. Y ) e. I ) |