| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lidlpropd.1 |  |-  ( ph -> B = ( Base ` K ) ) | 
						
							| 2 |  | lidlpropd.2 |  |-  ( ph -> B = ( Base ` L ) ) | 
						
							| 3 |  | lidlpropd.3 |  |-  ( ph -> B C_ W ) | 
						
							| 4 |  | lidlpropd.4 |  |-  ( ( ph /\ ( x e. W /\ y e. W ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) | 
						
							| 5 |  | lidlpropd.5 |  |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` K ) y ) e. W ) | 
						
							| 6 |  | lidlpropd.6 |  |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` K ) y ) = ( x ( .r ` L ) y ) ) | 
						
							| 7 |  | rlmbas |  |-  ( Base ` K ) = ( Base ` ( ringLMod ` K ) ) | 
						
							| 8 | 1 7 | eqtrdi |  |-  ( ph -> B = ( Base ` ( ringLMod ` K ) ) ) | 
						
							| 9 |  | rlmbas |  |-  ( Base ` L ) = ( Base ` ( ringLMod ` L ) ) | 
						
							| 10 | 2 9 | eqtrdi |  |-  ( ph -> B = ( Base ` ( ringLMod ` L ) ) ) | 
						
							| 11 |  | rlmplusg |  |-  ( +g ` K ) = ( +g ` ( ringLMod ` K ) ) | 
						
							| 12 | 11 | oveqi |  |-  ( x ( +g ` K ) y ) = ( x ( +g ` ( ringLMod ` K ) ) y ) | 
						
							| 13 |  | rlmplusg |  |-  ( +g ` L ) = ( +g ` ( ringLMod ` L ) ) | 
						
							| 14 | 13 | oveqi |  |-  ( x ( +g ` L ) y ) = ( x ( +g ` ( ringLMod ` L ) ) y ) | 
						
							| 15 | 4 12 14 | 3eqtr3g |  |-  ( ( ph /\ ( x e. W /\ y e. W ) ) -> ( x ( +g ` ( ringLMod ` K ) ) y ) = ( x ( +g ` ( ringLMod ` L ) ) y ) ) | 
						
							| 16 |  | rlmvsca |  |-  ( .r ` K ) = ( .s ` ( ringLMod ` K ) ) | 
						
							| 17 | 16 | oveqi |  |-  ( x ( .r ` K ) y ) = ( x ( .s ` ( ringLMod ` K ) ) y ) | 
						
							| 18 | 17 5 | eqeltrrid |  |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .s ` ( ringLMod ` K ) ) y ) e. W ) | 
						
							| 19 |  | rlmvsca |  |-  ( .r ` L ) = ( .s ` ( ringLMod ` L ) ) | 
						
							| 20 | 19 | oveqi |  |-  ( x ( .r ` L ) y ) = ( x ( .s ` ( ringLMod ` L ) ) y ) | 
						
							| 21 | 6 17 20 | 3eqtr3g |  |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .s ` ( ringLMod ` K ) ) y ) = ( x ( .s ` ( ringLMod ` L ) ) y ) ) | 
						
							| 22 |  | baseid |  |-  Base = Slot ( Base ` ndx ) | 
						
							| 23 |  | eqid |  |-  ( Base ` K ) = ( Base ` K ) | 
						
							| 24 | 22 23 | strfvi |  |-  ( Base ` K ) = ( Base ` ( _I ` K ) ) | 
						
							| 25 |  | rlmsca2 |  |-  ( _I ` K ) = ( Scalar ` ( ringLMod ` K ) ) | 
						
							| 26 | 25 | fveq2i |  |-  ( Base ` ( _I ` K ) ) = ( Base ` ( Scalar ` ( ringLMod ` K ) ) ) | 
						
							| 27 | 24 26 | eqtri |  |-  ( Base ` K ) = ( Base ` ( Scalar ` ( ringLMod ` K ) ) ) | 
						
							| 28 | 1 27 | eqtrdi |  |-  ( ph -> B = ( Base ` ( Scalar ` ( ringLMod ` K ) ) ) ) | 
						
							| 29 |  | eqid |  |-  ( Base ` L ) = ( Base ` L ) | 
						
							| 30 | 22 29 | strfvi |  |-  ( Base ` L ) = ( Base ` ( _I ` L ) ) | 
						
							| 31 |  | rlmsca2 |  |-  ( _I ` L ) = ( Scalar ` ( ringLMod ` L ) ) | 
						
							| 32 | 31 | fveq2i |  |-  ( Base ` ( _I ` L ) ) = ( Base ` ( Scalar ` ( ringLMod ` L ) ) ) | 
						
							| 33 | 30 32 | eqtri |  |-  ( Base ` L ) = ( Base ` ( Scalar ` ( ringLMod ` L ) ) ) | 
						
							| 34 | 2 33 | eqtrdi |  |-  ( ph -> B = ( Base ` ( Scalar ` ( ringLMod ` L ) ) ) ) | 
						
							| 35 | 8 10 3 15 18 21 28 34 | lsspropd |  |-  ( ph -> ( LSubSp ` ( ringLMod ` K ) ) = ( LSubSp ` ( ringLMod ` L ) ) ) | 
						
							| 36 |  | lidlval |  |-  ( LIdeal ` K ) = ( LSubSp ` ( ringLMod ` K ) ) | 
						
							| 37 |  | lidlval |  |-  ( LIdeal ` L ) = ( LSubSp ` ( ringLMod ` L ) ) | 
						
							| 38 | 35 36 37 | 3eqtr4g |  |-  ( ph -> ( LIdeal ` K ) = ( LIdeal ` L ) ) | 
						
							| 39 |  | fvexd |  |-  ( ph -> ( ringLMod ` K ) e. _V ) | 
						
							| 40 |  | fvexd |  |-  ( ph -> ( ringLMod ` L ) e. _V ) | 
						
							| 41 | 8 10 3 15 18 21 28 34 39 40 | lsppropd |  |-  ( ph -> ( LSpan ` ( ringLMod ` K ) ) = ( LSpan ` ( ringLMod ` L ) ) ) | 
						
							| 42 |  | rspval |  |-  ( RSpan ` K ) = ( LSpan ` ( ringLMod ` K ) ) | 
						
							| 43 |  | rspval |  |-  ( RSpan ` L ) = ( LSpan ` ( ringLMod ` L ) ) | 
						
							| 44 | 41 42 43 | 3eqtr4g |  |-  ( ph -> ( RSpan ` K ) = ( RSpan ` L ) ) | 
						
							| 45 | 38 44 | jca |  |-  ( ph -> ( ( LIdeal ` K ) = ( LIdeal ` L ) /\ ( RSpan ` K ) = ( RSpan ` L ) ) ) |