Description: An ideal is a subset of the base set. (Contributed by Stefan O'Rear, 28-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lidlss.b | |- B = ( Base ` W ) |
|
| lidlss.i | |- I = ( LIdeal ` W ) |
||
| Assertion | lidlss | |- ( U e. I -> U C_ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lidlss.b | |- B = ( Base ` W ) |
|
| 2 | lidlss.i | |- I = ( LIdeal ` W ) |
|
| 3 | rlmbas | |- ( Base ` W ) = ( Base ` ( ringLMod ` W ) ) |
|
| 4 | 1 3 | eqtri | |- B = ( Base ` ( ringLMod ` W ) ) |
| 5 | lidlval | |- ( LIdeal ` W ) = ( LSubSp ` ( ringLMod ` W ) ) |
|
| 6 | 2 5 | eqtri | |- I = ( LSubSp ` ( ringLMod ` W ) ) |
| 7 | 4 6 | lssss | |- ( U e. I -> U C_ B ) |