Metamath Proof Explorer


Theorem lidlss

Description: An ideal is a subset of the base set. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses lidlss.b
|- B = ( Base ` W )
lidlss.i
|- I = ( LIdeal ` W )
Assertion lidlss
|- ( U e. I -> U C_ B )

Proof

Step Hyp Ref Expression
1 lidlss.b
 |-  B = ( Base ` W )
2 lidlss.i
 |-  I = ( LIdeal ` W )
3 rlmbas
 |-  ( Base ` W ) = ( Base ` ( ringLMod ` W ) )
4 1 3 eqtri
 |-  B = ( Base ` ( ringLMod ` W ) )
5 lidlval
 |-  ( LIdeal ` W ) = ( LSubSp ` ( ringLMod ` W ) )
6 2 5 eqtri
 |-  I = ( LSubSp ` ( ringLMod ` W ) )
7 4 6 lssss
 |-  ( U e. I -> U C_ B )