Description: If there is a left and right identity element for any binary operation (group operation) .+ , both identity elements are equal. Generalization of statement in Lang p. 3: it is sufficient that "e" is a left identity element and "e``" is a right identity element instead of both being (two-sided) identity elements. (Contributed by AV, 26-Dec-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lidrideqd.l | |- ( ph -> L e. B ) |
|
lidrideqd.r | |- ( ph -> R e. B ) |
||
lidrideqd.li | |- ( ph -> A. x e. B ( L .+ x ) = x ) |
||
lidrideqd.ri | |- ( ph -> A. x e. B ( x .+ R ) = x ) |
||
Assertion | lidrideqd | |- ( ph -> L = R ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lidrideqd.l | |- ( ph -> L e. B ) |
|
2 | lidrideqd.r | |- ( ph -> R e. B ) |
|
3 | lidrideqd.li | |- ( ph -> A. x e. B ( L .+ x ) = x ) |
|
4 | lidrideqd.ri | |- ( ph -> A. x e. B ( x .+ R ) = x ) |
|
5 | oveq1 | |- ( x = L -> ( x .+ R ) = ( L .+ R ) ) |
|
6 | id | |- ( x = L -> x = L ) |
|
7 | 5 6 | eqeq12d | |- ( x = L -> ( ( x .+ R ) = x <-> ( L .+ R ) = L ) ) |
8 | 7 4 1 | rspcdva | |- ( ph -> ( L .+ R ) = L ) |
9 | oveq2 | |- ( x = R -> ( L .+ x ) = ( L .+ R ) ) |
|
10 | id | |- ( x = R -> x = R ) |
|
11 | 9 10 | eqeq12d | |- ( x = R -> ( ( L .+ x ) = x <-> ( L .+ R ) = R ) ) |
12 | 11 3 2 | rspcdva | |- ( ph -> ( L .+ R ) = R ) |
13 | 8 12 | eqtr3d | |- ( ph -> L = R ) |