Metamath Proof Explorer


Theorem lidrideqd

Description: If there is a left and right identity element for any binary operation (group operation) .+ , both identity elements are equal. Generalization of statement in Lang p. 3: it is sufficient that "e" is a left identity element and "e``" is a right identity element instead of both being (two-sided) identity elements. (Contributed by AV, 26-Dec-2023)

Ref Expression
Hypotheses lidrideqd.l
|- ( ph -> L e. B )
lidrideqd.r
|- ( ph -> R e. B )
lidrideqd.li
|- ( ph -> A. x e. B ( L .+ x ) = x )
lidrideqd.ri
|- ( ph -> A. x e. B ( x .+ R ) = x )
Assertion lidrideqd
|- ( ph -> L = R )

Proof

Step Hyp Ref Expression
1 lidrideqd.l
 |-  ( ph -> L e. B )
2 lidrideqd.r
 |-  ( ph -> R e. B )
3 lidrideqd.li
 |-  ( ph -> A. x e. B ( L .+ x ) = x )
4 lidrideqd.ri
 |-  ( ph -> A. x e. B ( x .+ R ) = x )
5 oveq1
 |-  ( x = L -> ( x .+ R ) = ( L .+ R ) )
6 id
 |-  ( x = L -> x = L )
7 5 6 eqeq12d
 |-  ( x = L -> ( ( x .+ R ) = x <-> ( L .+ R ) = L ) )
8 7 4 1 rspcdva
 |-  ( ph -> ( L .+ R ) = L )
9 oveq2
 |-  ( x = R -> ( L .+ x ) = ( L .+ R ) )
10 id
 |-  ( x = R -> x = R )
11 9 10 eqeq12d
 |-  ( x = R -> ( ( L .+ x ) = x <-> ( L .+ R ) = R ) )
12 11 3 2 rspcdva
 |-  ( ph -> ( L .+ R ) = R )
13 8 12 eqtr3d
 |-  ( ph -> L = R )