Step |
Hyp |
Ref |
Expression |
1 |
|
lidrideqd.l |
|- ( ph -> L e. B ) |
2 |
|
lidrideqd.r |
|- ( ph -> R e. B ) |
3 |
|
lidrideqd.li |
|- ( ph -> A. x e. B ( L .+ x ) = x ) |
4 |
|
lidrideqd.ri |
|- ( ph -> A. x e. B ( x .+ R ) = x ) |
5 |
|
lidrideqd.b |
|- B = ( Base ` G ) |
6 |
|
lidrideqd.p |
|- .+ = ( +g ` G ) |
7 |
|
lidrididd.o |
|- .0. = ( 0g ` G ) |
8 |
|
oveq2 |
|- ( x = y -> ( L .+ x ) = ( L .+ y ) ) |
9 |
|
id |
|- ( x = y -> x = y ) |
10 |
8 9
|
eqeq12d |
|- ( x = y -> ( ( L .+ x ) = x <-> ( L .+ y ) = y ) ) |
11 |
10
|
rspcv |
|- ( y e. B -> ( A. x e. B ( L .+ x ) = x -> ( L .+ y ) = y ) ) |
12 |
3 11
|
mpan9 |
|- ( ( ph /\ y e. B ) -> ( L .+ y ) = y ) |
13 |
1 2 3 4
|
lidrideqd |
|- ( ph -> L = R ) |
14 |
|
oveq1 |
|- ( x = y -> ( x .+ R ) = ( y .+ R ) ) |
15 |
14 9
|
eqeq12d |
|- ( x = y -> ( ( x .+ R ) = x <-> ( y .+ R ) = y ) ) |
16 |
15
|
rspcv |
|- ( y e. B -> ( A. x e. B ( x .+ R ) = x -> ( y .+ R ) = y ) ) |
17 |
|
oveq2 |
|- ( L = R -> ( y .+ L ) = ( y .+ R ) ) |
18 |
17
|
adantl |
|- ( ( ( y .+ R ) = y /\ L = R ) -> ( y .+ L ) = ( y .+ R ) ) |
19 |
|
simpl |
|- ( ( ( y .+ R ) = y /\ L = R ) -> ( y .+ R ) = y ) |
20 |
18 19
|
eqtrd |
|- ( ( ( y .+ R ) = y /\ L = R ) -> ( y .+ L ) = y ) |
21 |
20
|
ex |
|- ( ( y .+ R ) = y -> ( L = R -> ( y .+ L ) = y ) ) |
22 |
16 21
|
syl6com |
|- ( A. x e. B ( x .+ R ) = x -> ( y e. B -> ( L = R -> ( y .+ L ) = y ) ) ) |
23 |
22
|
com23 |
|- ( A. x e. B ( x .+ R ) = x -> ( L = R -> ( y e. B -> ( y .+ L ) = y ) ) ) |
24 |
4 13 23
|
sylc |
|- ( ph -> ( y e. B -> ( y .+ L ) = y ) ) |
25 |
24
|
imp |
|- ( ( ph /\ y e. B ) -> ( y .+ L ) = y ) |
26 |
5 7 6 1 12 25
|
ismgmid2 |
|- ( ph -> L = .0. ) |