Step |
Hyp |
Ref |
Expression |
1 |
|
2cnd |
|- ( N e. NN -> 2 e. CC ) |
2 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
3 |
1 2
|
expcld |
|- ( N e. NN -> ( 2 ^ N ) e. CC ) |
4 |
3
|
3ad2ant3 |
|- ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( 2 ^ N ) e. CC ) |
5 |
|
1cnd |
|- ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> 1 e. CC ) |
6 |
|
eldifi |
|- ( P e. ( Prime \ { 2 } ) -> P e. Prime ) |
7 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
8 |
|
nncn |
|- ( P e. NN -> P e. CC ) |
9 |
6 7 8
|
3syl |
|- ( P e. ( Prime \ { 2 } ) -> P e. CC ) |
10 |
9
|
3ad2ant1 |
|- ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> P e. CC ) |
11 |
|
nnnn0 |
|- ( M e. NN -> M e. NN0 ) |
12 |
11
|
3ad2ant2 |
|- ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> M e. NN0 ) |
13 |
10 12
|
expcld |
|- ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( P ^ M ) e. CC ) |
14 |
4 5 13
|
3jca |
|- ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( ( 2 ^ N ) e. CC /\ 1 e. CC /\ ( P ^ M ) e. CC ) ) |
15 |
14
|
adantr |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ -. 2 || M ) -> ( ( 2 ^ N ) e. CC /\ 1 e. CC /\ ( P ^ M ) e. CC ) ) |
16 |
|
subadd2 |
|- ( ( ( 2 ^ N ) e. CC /\ 1 e. CC /\ ( P ^ M ) e. CC ) -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) <-> ( ( P ^ M ) + 1 ) = ( 2 ^ N ) ) ) |
17 |
15 16
|
syl |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ -. 2 || M ) -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) <-> ( ( P ^ M ) + 1 ) = ( 2 ^ N ) ) ) |
18 |
10
|
adantr |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ -. 2 || M ) -> P e. CC ) |
19 |
|
simpl2 |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ -. 2 || M ) -> M e. NN ) |
20 |
|
simpr |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ -. 2 || M ) -> -. 2 || M ) |
21 |
18 19 20
|
oddpwp1fsum |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ -. 2 || M ) -> ( ( P ^ M ) + 1 ) = ( ( P + 1 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) ) ) |
22 |
21
|
eqeq1d |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ -. 2 || M ) -> ( ( ( P ^ M ) + 1 ) = ( 2 ^ N ) <-> ( ( P + 1 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) ) = ( 2 ^ N ) ) ) |
23 |
|
peano2nn |
|- ( P e. NN -> ( P + 1 ) e. NN ) |
24 |
23
|
nnzd |
|- ( P e. NN -> ( P + 1 ) e. ZZ ) |
25 |
6 7 24
|
3syl |
|- ( P e. ( Prime \ { 2 } ) -> ( P + 1 ) e. ZZ ) |
26 |
25
|
3ad2ant1 |
|- ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( P + 1 ) e. ZZ ) |
27 |
|
fzfid |
|- ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( 0 ... ( M - 1 ) ) e. Fin ) |
28 |
|
neg1z |
|- -u 1 e. ZZ |
29 |
28
|
a1i |
|- ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> -u 1 e. ZZ ) |
30 |
|
elfznn0 |
|- ( k e. ( 0 ... ( M - 1 ) ) -> k e. NN0 ) |
31 |
|
zexpcl |
|- ( ( -u 1 e. ZZ /\ k e. NN0 ) -> ( -u 1 ^ k ) e. ZZ ) |
32 |
29 30 31
|
syl2an |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ k e. ( 0 ... ( M - 1 ) ) ) -> ( -u 1 ^ k ) e. ZZ ) |
33 |
|
nnz |
|- ( P e. NN -> P e. ZZ ) |
34 |
6 7 33
|
3syl |
|- ( P e. ( Prime \ { 2 } ) -> P e. ZZ ) |
35 |
34
|
3ad2ant1 |
|- ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> P e. ZZ ) |
36 |
|
zexpcl |
|- ( ( P e. ZZ /\ k e. NN0 ) -> ( P ^ k ) e. ZZ ) |
37 |
35 30 36
|
syl2an |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ k e. ( 0 ... ( M - 1 ) ) ) -> ( P ^ k ) e. ZZ ) |
38 |
32 37
|
zmulcld |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ k e. ( 0 ... ( M - 1 ) ) ) -> ( ( -u 1 ^ k ) x. ( P ^ k ) ) e. ZZ ) |
39 |
27 38
|
fsumzcl |
|- ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) e. ZZ ) |
40 |
26 39
|
jca |
|- ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( ( P + 1 ) e. ZZ /\ sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) e. ZZ ) ) |
41 |
40
|
ad2antrr |
|- ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ -. 2 || M ) /\ ( ( P + 1 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) ) = ( 2 ^ N ) ) -> ( ( P + 1 ) e. ZZ /\ sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) e. ZZ ) ) |
42 |
|
dvdsmul2 |
|- ( ( ( P + 1 ) e. ZZ /\ sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) e. ZZ ) -> sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) || ( ( P + 1 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) ) ) |
43 |
41 42
|
syl |
|- ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ -. 2 || M ) /\ ( ( P + 1 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) ) = ( 2 ^ N ) ) -> sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) || ( ( P + 1 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) ) ) |
44 |
|
breq2 |
|- ( ( ( P + 1 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) ) = ( 2 ^ N ) -> ( sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) || ( ( P + 1 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) ) <-> sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) || ( 2 ^ N ) ) ) |
45 |
44
|
adantl |
|- ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ -. 2 || M ) /\ ( ( P + 1 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) ) = ( 2 ^ N ) ) -> ( sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) || ( ( P + 1 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) ) <-> sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) || ( 2 ^ N ) ) ) |
46 |
|
2a1 |
|- ( M = 1 -> ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ -. 2 || M ) -> ( sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) || ( 2 ^ N ) -> M = 1 ) ) ) |
47 |
|
2prm |
|- 2 e. Prime |
48 |
|
prmuz2 |
|- ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) |
49 |
6 48
|
syl |
|- ( P e. ( Prime \ { 2 } ) -> P e. ( ZZ>= ` 2 ) ) |
50 |
49
|
3ad2ant1 |
|- ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> P e. ( ZZ>= ` 2 ) ) |
51 |
50
|
adantr |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. M = 1 /\ -. 2 || M ) ) -> P e. ( ZZ>= ` 2 ) ) |
52 |
|
df-ne |
|- ( M =/= 1 <-> -. M = 1 ) |
53 |
|
eluz2b3 |
|- ( M e. ( ZZ>= ` 2 ) <-> ( M e. NN /\ M =/= 1 ) ) |
54 |
53
|
simplbi2 |
|- ( M e. NN -> ( M =/= 1 -> M e. ( ZZ>= ` 2 ) ) ) |
55 |
52 54
|
biimtrrid |
|- ( M e. NN -> ( -. M = 1 -> M e. ( ZZ>= ` 2 ) ) ) |
56 |
55
|
3ad2ant2 |
|- ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( -. M = 1 -> M e. ( ZZ>= ` 2 ) ) ) |
57 |
56
|
com12 |
|- ( -. M = 1 -> ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> M e. ( ZZ>= ` 2 ) ) ) |
58 |
57
|
adantr |
|- ( ( -. M = 1 /\ -. 2 || M ) -> ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> M e. ( ZZ>= ` 2 ) ) ) |
59 |
58
|
impcom |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. M = 1 /\ -. 2 || M ) ) -> M e. ( ZZ>= ` 2 ) ) |
60 |
|
simprr |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. M = 1 /\ -. 2 || M ) ) -> -. 2 || M ) |
61 |
|
lighneallem4b |
|- ( ( P e. ( ZZ>= ` 2 ) /\ M e. ( ZZ>= ` 2 ) /\ -. 2 || M ) -> sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) e. ( ZZ>= ` 2 ) ) |
62 |
51 59 60 61
|
syl3anc |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. M = 1 /\ -. 2 || M ) ) -> sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) e. ( ZZ>= ` 2 ) ) |
63 |
2
|
3ad2ant3 |
|- ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> N e. NN0 ) |
64 |
63
|
adantr |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. M = 1 /\ -. 2 || M ) ) -> N e. NN0 ) |
65 |
|
dvdsprmpweqnn |
|- ( ( 2 e. Prime /\ sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) e. ( ZZ>= ` 2 ) /\ N e. NN0 ) -> ( sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) || ( 2 ^ N ) -> E. n e. NN sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) = ( 2 ^ n ) ) ) |
66 |
47 62 64 65
|
mp3an2i |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. M = 1 /\ -. 2 || M ) ) -> ( sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) || ( 2 ^ N ) -> E. n e. NN sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) = ( 2 ^ n ) ) ) |
67 |
|
2z |
|- 2 e. ZZ |
68 |
67
|
a1i |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. M = 1 /\ -. 2 || M ) ) -> 2 e. ZZ ) |
69 |
|
iddvdsexp |
|- ( ( 2 e. ZZ /\ n e. NN ) -> 2 || ( 2 ^ n ) ) |
70 |
68 69
|
sylan |
|- ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. M = 1 /\ -. 2 || M ) ) /\ n e. NN ) -> 2 || ( 2 ^ n ) ) |
71 |
|
breq2 |
|- ( sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) = ( 2 ^ n ) -> ( 2 || sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) <-> 2 || ( 2 ^ n ) ) ) |
72 |
71
|
adantl |
|- ( ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. M = 1 /\ -. 2 || M ) ) /\ n e. NN ) /\ sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) = ( 2 ^ n ) ) -> ( 2 || sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) <-> 2 || ( 2 ^ n ) ) ) |
73 |
|
fzfid |
|- ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. M = 1 /\ -. 2 || M ) ) /\ n e. NN ) -> ( 0 ... ( M - 1 ) ) e. Fin ) |
74 |
28
|
a1i |
|- ( P e. NN -> -u 1 e. ZZ ) |
75 |
74 31
|
sylan |
|- ( ( P e. NN /\ k e. NN0 ) -> ( -u 1 ^ k ) e. ZZ ) |
76 |
|
nnnn0 |
|- ( P e. NN -> P e. NN0 ) |
77 |
76
|
adantr |
|- ( ( P e. NN /\ k e. NN0 ) -> P e. NN0 ) |
78 |
|
simpr |
|- ( ( P e. NN /\ k e. NN0 ) -> k e. NN0 ) |
79 |
77 78
|
nn0expcld |
|- ( ( P e. NN /\ k e. NN0 ) -> ( P ^ k ) e. NN0 ) |
80 |
79
|
nn0zd |
|- ( ( P e. NN /\ k e. NN0 ) -> ( P ^ k ) e. ZZ ) |
81 |
75 80
|
zmulcld |
|- ( ( P e. NN /\ k e. NN0 ) -> ( ( -u 1 ^ k ) x. ( P ^ k ) ) e. ZZ ) |
82 |
81
|
ex |
|- ( P e. NN -> ( k e. NN0 -> ( ( -u 1 ^ k ) x. ( P ^ k ) ) e. ZZ ) ) |
83 |
6 7 82
|
3syl |
|- ( P e. ( Prime \ { 2 } ) -> ( k e. NN0 -> ( ( -u 1 ^ k ) x. ( P ^ k ) ) e. ZZ ) ) |
84 |
83
|
3ad2ant1 |
|- ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( k e. NN0 -> ( ( -u 1 ^ k ) x. ( P ^ k ) ) e. ZZ ) ) |
85 |
84
|
ad2antrr |
|- ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. M = 1 /\ -. 2 || M ) ) /\ n e. NN ) -> ( k e. NN0 -> ( ( -u 1 ^ k ) x. ( P ^ k ) ) e. ZZ ) ) |
86 |
85 30
|
impel |
|- ( ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. M = 1 /\ -. 2 || M ) ) /\ n e. NN ) /\ k e. ( 0 ... ( M - 1 ) ) ) -> ( ( -u 1 ^ k ) x. ( P ^ k ) ) e. ZZ ) |
87 |
|
nn0z |
|- ( k e. NN0 -> k e. ZZ ) |
88 |
|
m1expcl2 |
|- ( k e. ZZ -> ( -u 1 ^ k ) e. { -u 1 , 1 } ) |
89 |
87 88
|
syl |
|- ( k e. NN0 -> ( -u 1 ^ k ) e. { -u 1 , 1 } ) |
90 |
|
ovex |
|- ( -u 1 ^ k ) e. _V |
91 |
90
|
elpr |
|- ( ( -u 1 ^ k ) e. { -u 1 , 1 } <-> ( ( -u 1 ^ k ) = -u 1 \/ ( -u 1 ^ k ) = 1 ) ) |
92 |
|
n2dvdsm1 |
|- -. 2 || -u 1 |
93 |
|
breq2 |
|- ( ( -u 1 ^ k ) = -u 1 -> ( 2 || ( -u 1 ^ k ) <-> 2 || -u 1 ) ) |
94 |
92 93
|
mtbiri |
|- ( ( -u 1 ^ k ) = -u 1 -> -. 2 || ( -u 1 ^ k ) ) |
95 |
|
n2dvds1 |
|- -. 2 || 1 |
96 |
|
breq2 |
|- ( ( -u 1 ^ k ) = 1 -> ( 2 || ( -u 1 ^ k ) <-> 2 || 1 ) ) |
97 |
95 96
|
mtbiri |
|- ( ( -u 1 ^ k ) = 1 -> -. 2 || ( -u 1 ^ k ) ) |
98 |
94 97
|
jaoi |
|- ( ( ( -u 1 ^ k ) = -u 1 \/ ( -u 1 ^ k ) = 1 ) -> -. 2 || ( -u 1 ^ k ) ) |
99 |
98
|
a1d |
|- ( ( ( -u 1 ^ k ) = -u 1 \/ ( -u 1 ^ k ) = 1 ) -> ( k e. NN0 -> -. 2 || ( -u 1 ^ k ) ) ) |
100 |
91 99
|
sylbi |
|- ( ( -u 1 ^ k ) e. { -u 1 , 1 } -> ( k e. NN0 -> -. 2 || ( -u 1 ^ k ) ) ) |
101 |
89 100
|
mpcom |
|- ( k e. NN0 -> -. 2 || ( -u 1 ^ k ) ) |
102 |
101
|
adantl |
|- ( ( P e. ( Prime \ { 2 } ) /\ k e. NN0 ) -> -. 2 || ( -u 1 ^ k ) ) |
103 |
|
elnn0 |
|- ( k e. NN0 <-> ( k e. NN \/ k = 0 ) ) |
104 |
|
oddn2prm |
|- ( P e. ( Prime \ { 2 } ) -> -. 2 || P ) |
105 |
104
|
adantr |
|- ( ( P e. ( Prime \ { 2 } ) /\ k e. NN ) -> -. 2 || P ) |
106 |
|
simpr |
|- ( ( P e. ( Prime \ { 2 } ) /\ k e. NN ) -> k e. NN ) |
107 |
|
prmdvdsexp |
|- ( ( 2 e. Prime /\ P e. ZZ /\ k e. NN ) -> ( 2 || ( P ^ k ) <-> 2 || P ) ) |
108 |
47 34 106 107
|
mp3an2ani |
|- ( ( P e. ( Prime \ { 2 } ) /\ k e. NN ) -> ( 2 || ( P ^ k ) <-> 2 || P ) ) |
109 |
105 108
|
mtbird |
|- ( ( P e. ( Prime \ { 2 } ) /\ k e. NN ) -> -. 2 || ( P ^ k ) ) |
110 |
109
|
expcom |
|- ( k e. NN -> ( P e. ( Prime \ { 2 } ) -> -. 2 || ( P ^ k ) ) ) |
111 |
|
oveq2 |
|- ( k = 0 -> ( P ^ k ) = ( P ^ 0 ) ) |
112 |
111
|
adantr |
|- ( ( k = 0 /\ P e. ( Prime \ { 2 } ) ) -> ( P ^ k ) = ( P ^ 0 ) ) |
113 |
9
|
adantl |
|- ( ( k = 0 /\ P e. ( Prime \ { 2 } ) ) -> P e. CC ) |
114 |
113
|
exp0d |
|- ( ( k = 0 /\ P e. ( Prime \ { 2 } ) ) -> ( P ^ 0 ) = 1 ) |
115 |
112 114
|
eqtrd |
|- ( ( k = 0 /\ P e. ( Prime \ { 2 } ) ) -> ( P ^ k ) = 1 ) |
116 |
115
|
breq2d |
|- ( ( k = 0 /\ P e. ( Prime \ { 2 } ) ) -> ( 2 || ( P ^ k ) <-> 2 || 1 ) ) |
117 |
95 116
|
mtbiri |
|- ( ( k = 0 /\ P e. ( Prime \ { 2 } ) ) -> -. 2 || ( P ^ k ) ) |
118 |
117
|
ex |
|- ( k = 0 -> ( P e. ( Prime \ { 2 } ) -> -. 2 || ( P ^ k ) ) ) |
119 |
110 118
|
jaoi |
|- ( ( k e. NN \/ k = 0 ) -> ( P e. ( Prime \ { 2 } ) -> -. 2 || ( P ^ k ) ) ) |
120 |
103 119
|
sylbi |
|- ( k e. NN0 -> ( P e. ( Prime \ { 2 } ) -> -. 2 || ( P ^ k ) ) ) |
121 |
120
|
impcom |
|- ( ( P e. ( Prime \ { 2 } ) /\ k e. NN0 ) -> -. 2 || ( P ^ k ) ) |
122 |
|
ioran |
|- ( -. ( 2 || ( -u 1 ^ k ) \/ 2 || ( P ^ k ) ) <-> ( -. 2 || ( -u 1 ^ k ) /\ -. 2 || ( P ^ k ) ) ) |
123 |
102 121 122
|
sylanbrc |
|- ( ( P e. ( Prime \ { 2 } ) /\ k e. NN0 ) -> -. ( 2 || ( -u 1 ^ k ) \/ 2 || ( P ^ k ) ) ) |
124 |
28 31
|
mpan |
|- ( k e. NN0 -> ( -u 1 ^ k ) e. ZZ ) |
125 |
124
|
adantl |
|- ( ( P e. ( Prime \ { 2 } ) /\ k e. NN0 ) -> ( -u 1 ^ k ) e. ZZ ) |
126 |
6 7 76
|
3syl |
|- ( P e. ( Prime \ { 2 } ) -> P e. NN0 ) |
127 |
126
|
adantr |
|- ( ( P e. ( Prime \ { 2 } ) /\ k e. NN0 ) -> P e. NN0 ) |
128 |
|
simpr |
|- ( ( P e. ( Prime \ { 2 } ) /\ k e. NN0 ) -> k e. NN0 ) |
129 |
127 128
|
nn0expcld |
|- ( ( P e. ( Prime \ { 2 } ) /\ k e. NN0 ) -> ( P ^ k ) e. NN0 ) |
130 |
129
|
nn0zd |
|- ( ( P e. ( Prime \ { 2 } ) /\ k e. NN0 ) -> ( P ^ k ) e. ZZ ) |
131 |
|
euclemma |
|- ( ( 2 e. Prime /\ ( -u 1 ^ k ) e. ZZ /\ ( P ^ k ) e. ZZ ) -> ( 2 || ( ( -u 1 ^ k ) x. ( P ^ k ) ) <-> ( 2 || ( -u 1 ^ k ) \/ 2 || ( P ^ k ) ) ) ) |
132 |
47 125 130 131
|
mp3an2i |
|- ( ( P e. ( Prime \ { 2 } ) /\ k e. NN0 ) -> ( 2 || ( ( -u 1 ^ k ) x. ( P ^ k ) ) <-> ( 2 || ( -u 1 ^ k ) \/ 2 || ( P ^ k ) ) ) ) |
133 |
123 132
|
mtbird |
|- ( ( P e. ( Prime \ { 2 } ) /\ k e. NN0 ) -> -. 2 || ( ( -u 1 ^ k ) x. ( P ^ k ) ) ) |
134 |
133
|
ex |
|- ( P e. ( Prime \ { 2 } ) -> ( k e. NN0 -> -. 2 || ( ( -u 1 ^ k ) x. ( P ^ k ) ) ) ) |
135 |
134
|
3ad2ant1 |
|- ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( k e. NN0 -> -. 2 || ( ( -u 1 ^ k ) x. ( P ^ k ) ) ) ) |
136 |
135
|
ad2antrr |
|- ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. M = 1 /\ -. 2 || M ) ) /\ n e. NN ) -> ( k e. NN0 -> -. 2 || ( ( -u 1 ^ k ) x. ( P ^ k ) ) ) ) |
137 |
136 30
|
impel |
|- ( ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. M = 1 /\ -. 2 || M ) ) /\ n e. NN ) /\ k e. ( 0 ... ( M - 1 ) ) ) -> -. 2 || ( ( -u 1 ^ k ) x. ( P ^ k ) ) ) |
138 |
|
nnm1nn0 |
|- ( M e. NN -> ( M - 1 ) e. NN0 ) |
139 |
|
hashfz0 |
|- ( ( M - 1 ) e. NN0 -> ( # ` ( 0 ... ( M - 1 ) ) ) = ( ( M - 1 ) + 1 ) ) |
140 |
138 139
|
syl |
|- ( M e. NN -> ( # ` ( 0 ... ( M - 1 ) ) ) = ( ( M - 1 ) + 1 ) ) |
141 |
|
nncn |
|- ( M e. NN -> M e. CC ) |
142 |
|
npcan1 |
|- ( M e. CC -> ( ( M - 1 ) + 1 ) = M ) |
143 |
141 142
|
syl |
|- ( M e. NN -> ( ( M - 1 ) + 1 ) = M ) |
144 |
140 143
|
eqtr2d |
|- ( M e. NN -> M = ( # ` ( 0 ... ( M - 1 ) ) ) ) |
145 |
144
|
3ad2ant2 |
|- ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> M = ( # ` ( 0 ... ( M - 1 ) ) ) ) |
146 |
145
|
adantr |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ -. M = 1 ) -> M = ( # ` ( 0 ... ( M - 1 ) ) ) ) |
147 |
146
|
breq2d |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ -. M = 1 ) -> ( 2 || M <-> 2 || ( # ` ( 0 ... ( M - 1 ) ) ) ) ) |
148 |
147
|
notbid |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ -. M = 1 ) -> ( -. 2 || M <-> -. 2 || ( # ` ( 0 ... ( M - 1 ) ) ) ) ) |
149 |
148
|
biimpd |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ -. M = 1 ) -> ( -. 2 || M -> -. 2 || ( # ` ( 0 ... ( M - 1 ) ) ) ) ) |
150 |
149
|
impr |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. M = 1 /\ -. 2 || M ) ) -> -. 2 || ( # ` ( 0 ... ( M - 1 ) ) ) ) |
151 |
150
|
adantr |
|- ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. M = 1 /\ -. 2 || M ) ) /\ n e. NN ) -> -. 2 || ( # ` ( 0 ... ( M - 1 ) ) ) ) |
152 |
73 86 137 151
|
oddsumodd |
|- ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. M = 1 /\ -. 2 || M ) ) /\ n e. NN ) -> -. 2 || sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) ) |
153 |
152
|
pm2.21d |
|- ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. M = 1 /\ -. 2 || M ) ) /\ n e. NN ) -> ( 2 || sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) -> M = 1 ) ) |
154 |
153
|
adantr |
|- ( ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. M = 1 /\ -. 2 || M ) ) /\ n e. NN ) /\ sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) = ( 2 ^ n ) ) -> ( 2 || sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) -> M = 1 ) ) |
155 |
72 154
|
sylbird |
|- ( ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. M = 1 /\ -. 2 || M ) ) /\ n e. NN ) /\ sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) = ( 2 ^ n ) ) -> ( 2 || ( 2 ^ n ) -> M = 1 ) ) |
156 |
155
|
ex |
|- ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. M = 1 /\ -. 2 || M ) ) /\ n e. NN ) -> ( sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) = ( 2 ^ n ) -> ( 2 || ( 2 ^ n ) -> M = 1 ) ) ) |
157 |
70 156
|
mpid |
|- ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. M = 1 /\ -. 2 || M ) ) /\ n e. NN ) -> ( sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) = ( 2 ^ n ) -> M = 1 ) ) |
158 |
157
|
rexlimdva |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. M = 1 /\ -. 2 || M ) ) -> ( E. n e. NN sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) = ( 2 ^ n ) -> M = 1 ) ) |
159 |
66 158
|
syld |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. M = 1 /\ -. 2 || M ) ) -> ( sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) || ( 2 ^ N ) -> M = 1 ) ) |
160 |
159
|
exp32 |
|- ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( -. M = 1 -> ( -. 2 || M -> ( sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) || ( 2 ^ N ) -> M = 1 ) ) ) ) |
161 |
160
|
com12 |
|- ( -. M = 1 -> ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( -. 2 || M -> ( sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) || ( 2 ^ N ) -> M = 1 ) ) ) ) |
162 |
161
|
impd |
|- ( -. M = 1 -> ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ -. 2 || M ) -> ( sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) || ( 2 ^ N ) -> M = 1 ) ) ) |
163 |
46 162
|
pm2.61i |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ -. 2 || M ) -> ( sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) || ( 2 ^ N ) -> M = 1 ) ) |
164 |
163
|
adantr |
|- ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ -. 2 || M ) /\ ( ( P + 1 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) ) = ( 2 ^ N ) ) -> ( sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) || ( 2 ^ N ) -> M = 1 ) ) |
165 |
45 164
|
sylbid |
|- ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ -. 2 || M ) /\ ( ( P + 1 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) ) = ( 2 ^ N ) ) -> ( sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) || ( ( P + 1 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) ) -> M = 1 ) ) |
166 |
43 165
|
mpd |
|- ( ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ -. 2 || M ) /\ ( ( P + 1 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) ) = ( 2 ^ N ) ) -> M = 1 ) |
167 |
166
|
ex |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ -. 2 || M ) -> ( ( ( P + 1 ) x. sum_ k e. ( 0 ... ( M - 1 ) ) ( ( -u 1 ^ k ) x. ( P ^ k ) ) ) = ( 2 ^ N ) -> M = 1 ) ) |
168 |
22 167
|
sylbid |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ -. 2 || M ) -> ( ( ( P ^ M ) + 1 ) = ( 2 ^ N ) -> M = 1 ) ) |
169 |
17 168
|
sylbid |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ -. 2 || M ) -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) |
170 |
169
|
ex |
|- ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( -. 2 || M -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) |
171 |
170
|
adantld |
|- ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) -> ( ( -. 2 || N /\ -. 2 || M ) -> ( ( ( 2 ^ N ) - 1 ) = ( P ^ M ) -> M = 1 ) ) ) |
172 |
171
|
3imp |
|- ( ( ( P e. ( Prime \ { 2 } ) /\ M e. NN /\ N e. NN ) /\ ( -. 2 || N /\ -. 2 || M ) /\ ( ( 2 ^ N ) - 1 ) = ( P ^ M ) ) -> M = 1 ) |