Step |
Hyp |
Ref |
Expression |
1 |
|
limcrcl |
|- ( x e. ( F limCC B ) -> ( F : dom F --> CC /\ dom F C_ CC /\ B e. CC ) ) |
2 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t ( dom F u. { B } ) ) = ( ( TopOpen ` CCfld ) |`t ( dom F u. { B } ) ) |
3 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
4 |
2 3
|
limcfval |
|- ( ( F : dom F --> CC /\ dom F C_ CC /\ B e. CC ) -> ( ( F limCC B ) = { y | ( z e. ( dom F u. { B } ) |-> if ( z = B , y , ( F ` z ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( dom F u. { B } ) ) CnP ( TopOpen ` CCfld ) ) ` B ) } /\ ( F limCC B ) C_ CC ) ) |
5 |
1 4
|
syl |
|- ( x e. ( F limCC B ) -> ( ( F limCC B ) = { y | ( z e. ( dom F u. { B } ) |-> if ( z = B , y , ( F ` z ) ) ) e. ( ( ( ( TopOpen ` CCfld ) |`t ( dom F u. { B } ) ) CnP ( TopOpen ` CCfld ) ) ` B ) } /\ ( F limCC B ) C_ CC ) ) |
6 |
5
|
simprd |
|- ( x e. ( F limCC B ) -> ( F limCC B ) C_ CC ) |
7 |
|
id |
|- ( x e. ( F limCC B ) -> x e. ( F limCC B ) ) |
8 |
6 7
|
sseldd |
|- ( x e. ( F limCC B ) -> x e. CC ) |
9 |
8
|
ssriv |
|- ( F limCC B ) C_ CC |