Step |
Hyp |
Ref |
Expression |
1 |
|
limcdm0.f |
|- ( ph -> F : (/) --> CC ) |
2 |
|
limcdm0.b |
|- ( ph -> B e. CC ) |
3 |
|
limccl |
|- ( F limCC B ) C_ CC |
4 |
3
|
sseli |
|- ( x e. ( F limCC B ) -> x e. CC ) |
5 |
4
|
adantl |
|- ( ( ph /\ x e. ( F limCC B ) ) -> x e. CC ) |
6 |
|
simpr |
|- ( ( ph /\ x e. CC ) -> x e. CC ) |
7 |
|
1rp |
|- 1 e. RR+ |
8 |
|
ral0 |
|- A. z e. (/) ( ( z =/= B /\ ( abs ` ( z - B ) ) < 1 ) -> ( abs ` ( ( F ` z ) - x ) ) < y ) |
9 |
|
brimralrspcev |
|- ( ( 1 e. RR+ /\ A. z e. (/) ( ( z =/= B /\ ( abs ` ( z - B ) ) < 1 ) -> ( abs ` ( ( F ` z ) - x ) ) < y ) ) -> E. w e. RR+ A. z e. (/) ( ( z =/= B /\ ( abs ` ( z - B ) ) < w ) -> ( abs ` ( ( F ` z ) - x ) ) < y ) ) |
10 |
7 8 9
|
mp2an |
|- E. w e. RR+ A. z e. (/) ( ( z =/= B /\ ( abs ` ( z - B ) ) < w ) -> ( abs ` ( ( F ` z ) - x ) ) < y ) |
11 |
10
|
rgenw |
|- A. y e. RR+ E. w e. RR+ A. z e. (/) ( ( z =/= B /\ ( abs ` ( z - B ) ) < w ) -> ( abs ` ( ( F ` z ) - x ) ) < y ) |
12 |
11
|
a1i |
|- ( ( ph /\ x e. CC ) -> A. y e. RR+ E. w e. RR+ A. z e. (/) ( ( z =/= B /\ ( abs ` ( z - B ) ) < w ) -> ( abs ` ( ( F ` z ) - x ) ) < y ) ) |
13 |
1
|
adantr |
|- ( ( ph /\ x e. CC ) -> F : (/) --> CC ) |
14 |
|
0ss |
|- (/) C_ CC |
15 |
14
|
a1i |
|- ( ( ph /\ x e. CC ) -> (/) C_ CC ) |
16 |
2
|
adantr |
|- ( ( ph /\ x e. CC ) -> B e. CC ) |
17 |
13 15 16
|
ellimc3 |
|- ( ( ph /\ x e. CC ) -> ( x e. ( F limCC B ) <-> ( x e. CC /\ A. y e. RR+ E. w e. RR+ A. z e. (/) ( ( z =/= B /\ ( abs ` ( z - B ) ) < w ) -> ( abs ` ( ( F ` z ) - x ) ) < y ) ) ) ) |
18 |
6 12 17
|
mpbir2and |
|- ( ( ph /\ x e. CC ) -> x e. ( F limCC B ) ) |
19 |
5 18
|
impbida |
|- ( ph -> ( x e. ( F limCC B ) <-> x e. CC ) ) |
20 |
19
|
eqrdv |
|- ( ph -> ( F limCC B ) = CC ) |