Metamath Proof Explorer


Theorem limcflf

Description: The limit operator can be expressed as a filter limit, from the filter of neighborhoods of B restricted to A \ { B } , to the topology of the complex numbers. (If B is not a limit point of A , then it is still formally a filter limit, but the neighborhood filter is not a proper filter in this case.) (Contributed by Mario Carneiro, 25-Dec-2016)

Ref Expression
Hypotheses limcflf.f
|- ( ph -> F : A --> CC )
limcflf.a
|- ( ph -> A C_ CC )
limcflf.b
|- ( ph -> B e. ( ( limPt ` K ) ` A ) )
limcflf.k
|- K = ( TopOpen ` CCfld )
limcflf.c
|- C = ( A \ { B } )
limcflf.l
|- L = ( ( ( nei ` K ) ` { B } ) |`t C )
Assertion limcflf
|- ( ph -> ( F limCC B ) = ( ( K fLimf L ) ` ( F |` C ) ) )

Proof

Step Hyp Ref Expression
1 limcflf.f
 |-  ( ph -> F : A --> CC )
2 limcflf.a
 |-  ( ph -> A C_ CC )
3 limcflf.b
 |-  ( ph -> B e. ( ( limPt ` K ) ` A ) )
4 limcflf.k
 |-  K = ( TopOpen ` CCfld )
5 limcflf.c
 |-  C = ( A \ { B } )
6 limcflf.l
 |-  L = ( ( ( nei ` K ) ` { B } ) |`t C )
7 vex
 |-  t e. _V
8 7 inex1
 |-  ( t i^i C ) e. _V
9 8 rgenw
 |-  A. t e. ( ( nei ` K ) ` { B } ) ( t i^i C ) e. _V
10 eqid
 |-  ( t e. ( ( nei ` K ) ` { B } ) |-> ( t i^i C ) ) = ( t e. ( ( nei ` K ) ` { B } ) |-> ( t i^i C ) )
11 imaeq2
 |-  ( s = ( t i^i C ) -> ( ( F |` C ) " s ) = ( ( F |` C ) " ( t i^i C ) ) )
12 inss2
 |-  ( t i^i C ) C_ C
13 resima2
 |-  ( ( t i^i C ) C_ C -> ( ( F |` C ) " ( t i^i C ) ) = ( F " ( t i^i C ) ) )
14 12 13 ax-mp
 |-  ( ( F |` C ) " ( t i^i C ) ) = ( F " ( t i^i C ) )
15 11 14 eqtrdi
 |-  ( s = ( t i^i C ) -> ( ( F |` C ) " s ) = ( F " ( t i^i C ) ) )
16 15 sseq1d
 |-  ( s = ( t i^i C ) -> ( ( ( F |` C ) " s ) C_ u <-> ( F " ( t i^i C ) ) C_ u ) )
17 10 16 rexrnmptw
 |-  ( A. t e. ( ( nei ` K ) ` { B } ) ( t i^i C ) e. _V -> ( E. s e. ran ( t e. ( ( nei ` K ) ` { B } ) |-> ( t i^i C ) ) ( ( F |` C ) " s ) C_ u <-> E. t e. ( ( nei ` K ) ` { B } ) ( F " ( t i^i C ) ) C_ u ) )
18 9 17 mp1i
 |-  ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) -> ( E. s e. ran ( t e. ( ( nei ` K ) ` { B } ) |-> ( t i^i C ) ) ( ( F |` C ) " s ) C_ u <-> E. t e. ( ( nei ` K ) ` { B } ) ( F " ( t i^i C ) ) C_ u ) )
19 fvex
 |-  ( ( nei ` K ) ` { B } ) e. _V
20 difss
 |-  ( A \ { B } ) C_ A
21 5 20 eqsstri
 |-  C C_ A
22 21 2 sstrid
 |-  ( ph -> C C_ CC )
23 cnex
 |-  CC e. _V
24 23 ssex
 |-  ( C C_ CC -> C e. _V )
25 22 24 syl
 |-  ( ph -> C e. _V )
26 25 ad2antrr
 |-  ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) -> C e. _V )
27 restval
 |-  ( ( ( ( nei ` K ) ` { B } ) e. _V /\ C e. _V ) -> ( ( ( nei ` K ) ` { B } ) |`t C ) = ran ( t e. ( ( nei ` K ) ` { B } ) |-> ( t i^i C ) ) )
28 19 26 27 sylancr
 |-  ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) -> ( ( ( nei ` K ) ` { B } ) |`t C ) = ran ( t e. ( ( nei ` K ) ` { B } ) |-> ( t i^i C ) ) )
29 6 28 syl5eq
 |-  ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) -> L = ran ( t e. ( ( nei ` K ) ` { B } ) |-> ( t i^i C ) ) )
30 29 rexeqdv
 |-  ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) -> ( E. s e. L ( ( F |` C ) " s ) C_ u <-> E. s e. ran ( t e. ( ( nei ` K ) ` { B } ) |-> ( t i^i C ) ) ( ( F |` C ) " s ) C_ u ) )
31 4 cnfldtop
 |-  K e. Top
32 opnneip
 |-  ( ( K e. Top /\ w e. K /\ B e. w ) -> w e. ( ( nei ` K ) ` { B } ) )
33 31 32 mp3an1
 |-  ( ( w e. K /\ B e. w ) -> w e. ( ( nei ` K ) ` { B } ) )
34 id
 |-  ( t = w -> t = w )
35 5 a1i
 |-  ( t = w -> C = ( A \ { B } ) )
36 34 35 ineq12d
 |-  ( t = w -> ( t i^i C ) = ( w i^i ( A \ { B } ) ) )
37 36 imaeq2d
 |-  ( t = w -> ( F " ( t i^i C ) ) = ( F " ( w i^i ( A \ { B } ) ) ) )
38 37 sseq1d
 |-  ( t = w -> ( ( F " ( t i^i C ) ) C_ u <-> ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) )
39 38 rspcev
 |-  ( ( w e. ( ( nei ` K ) ` { B } ) /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) -> E. t e. ( ( nei ` K ) ` { B } ) ( F " ( t i^i C ) ) C_ u )
40 33 39 sylan
 |-  ( ( ( w e. K /\ B e. w ) /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) -> E. t e. ( ( nei ` K ) ` { B } ) ( F " ( t i^i C ) ) C_ u )
41 40 anasss
 |-  ( ( w e. K /\ ( B e. w /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) ) -> E. t e. ( ( nei ` K ) ` { B } ) ( F " ( t i^i C ) ) C_ u )
42 41 rexlimiva
 |-  ( E. w e. K ( B e. w /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) -> E. t e. ( ( nei ` K ) ` { B } ) ( F " ( t i^i C ) ) C_ u )
43 simprl
 |-  ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> t e. ( ( nei ` K ) ` { B } ) )
44 4 cnfldtopon
 |-  K e. ( TopOn ` CC )
45 44 toponunii
 |-  CC = U. K
46 45 neii1
 |-  ( ( K e. Top /\ t e. ( ( nei ` K ) ` { B } ) ) -> t C_ CC )
47 31 43 46 sylancr
 |-  ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> t C_ CC )
48 45 ntropn
 |-  ( ( K e. Top /\ t C_ CC ) -> ( ( int ` K ) ` t ) e. K )
49 31 47 48 sylancr
 |-  ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> ( ( int ` K ) ` t ) e. K )
50 45 lpss
 |-  ( ( K e. Top /\ A C_ CC ) -> ( ( limPt ` K ) ` A ) C_ CC )
51 31 2 50 sylancr
 |-  ( ph -> ( ( limPt ` K ) ` A ) C_ CC )
52 51 3 sseldd
 |-  ( ph -> B e. CC )
53 52 snssd
 |-  ( ph -> { B } C_ CC )
54 53 ad3antrrr
 |-  ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> { B } C_ CC )
55 45 neiint
 |-  ( ( K e. Top /\ { B } C_ CC /\ t C_ CC ) -> ( t e. ( ( nei ` K ) ` { B } ) <-> { B } C_ ( ( int ` K ) ` t ) ) )
56 31 54 47 55 mp3an2i
 |-  ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> ( t e. ( ( nei ` K ) ` { B } ) <-> { B } C_ ( ( int ` K ) ` t ) ) )
57 43 56 mpbid
 |-  ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> { B } C_ ( ( int ` K ) ` t ) )
58 52 ad3antrrr
 |-  ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> B e. CC )
59 snssg
 |-  ( B e. CC -> ( B e. ( ( int ` K ) ` t ) <-> { B } C_ ( ( int ` K ) ` t ) ) )
60 58 59 syl
 |-  ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> ( B e. ( ( int ` K ) ` t ) <-> { B } C_ ( ( int ` K ) ` t ) ) )
61 57 60 mpbird
 |-  ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> B e. ( ( int ` K ) ` t ) )
62 45 ntrss2
 |-  ( ( K e. Top /\ t C_ CC ) -> ( ( int ` K ) ` t ) C_ t )
63 31 47 62 sylancr
 |-  ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> ( ( int ` K ) ` t ) C_ t )
64 ssrin
 |-  ( ( ( int ` K ) ` t ) C_ t -> ( ( ( int ` K ) ` t ) i^i C ) C_ ( t i^i C ) )
65 imass2
 |-  ( ( ( ( int ` K ) ` t ) i^i C ) C_ ( t i^i C ) -> ( F " ( ( ( int ` K ) ` t ) i^i C ) ) C_ ( F " ( t i^i C ) ) )
66 63 64 65 3syl
 |-  ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> ( F " ( ( ( int ` K ) ` t ) i^i C ) ) C_ ( F " ( t i^i C ) ) )
67 simprr
 |-  ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> ( F " ( t i^i C ) ) C_ u )
68 66 67 sstrd
 |-  ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> ( F " ( ( ( int ` K ) ` t ) i^i C ) ) C_ u )
69 eleq2
 |-  ( w = ( ( int ` K ) ` t ) -> ( B e. w <-> B e. ( ( int ` K ) ` t ) ) )
70 5 ineq2i
 |-  ( w i^i C ) = ( w i^i ( A \ { B } ) )
71 ineq1
 |-  ( w = ( ( int ` K ) ` t ) -> ( w i^i C ) = ( ( ( int ` K ) ` t ) i^i C ) )
72 70 71 eqtr3id
 |-  ( w = ( ( int ` K ) ` t ) -> ( w i^i ( A \ { B } ) ) = ( ( ( int ` K ) ` t ) i^i C ) )
73 72 imaeq2d
 |-  ( w = ( ( int ` K ) ` t ) -> ( F " ( w i^i ( A \ { B } ) ) ) = ( F " ( ( ( int ` K ) ` t ) i^i C ) ) )
74 73 sseq1d
 |-  ( w = ( ( int ` K ) ` t ) -> ( ( F " ( w i^i ( A \ { B } ) ) ) C_ u <-> ( F " ( ( ( int ` K ) ` t ) i^i C ) ) C_ u ) )
75 69 74 anbi12d
 |-  ( w = ( ( int ` K ) ` t ) -> ( ( B e. w /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) <-> ( B e. ( ( int ` K ) ` t ) /\ ( F " ( ( ( int ` K ) ` t ) i^i C ) ) C_ u ) ) )
76 75 rspcev
 |-  ( ( ( ( int ` K ) ` t ) e. K /\ ( B e. ( ( int ` K ) ` t ) /\ ( F " ( ( ( int ` K ) ` t ) i^i C ) ) C_ u ) ) -> E. w e. K ( B e. w /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) )
77 49 61 68 76 syl12anc
 |-  ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> E. w e. K ( B e. w /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) )
78 77 rexlimdvaa
 |-  ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) -> ( E. t e. ( ( nei ` K ) ` { B } ) ( F " ( t i^i C ) ) C_ u -> E. w e. K ( B e. w /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) ) )
79 42 78 impbid2
 |-  ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) -> ( E. w e. K ( B e. w /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) <-> E. t e. ( ( nei ` K ) ` { B } ) ( F " ( t i^i C ) ) C_ u ) )
80 18 30 79 3bitr4rd
 |-  ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) -> ( E. w e. K ( B e. w /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) <-> E. s e. L ( ( F |` C ) " s ) C_ u ) )
81 80 anassrs
 |-  ( ( ( ( ph /\ x e. CC ) /\ u e. K ) /\ x e. u ) -> ( E. w e. K ( B e. w /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) <-> E. s e. L ( ( F |` C ) " s ) C_ u ) )
82 81 pm5.74da
 |-  ( ( ( ph /\ x e. CC ) /\ u e. K ) -> ( ( x e. u -> E. w e. K ( B e. w /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) ) <-> ( x e. u -> E. s e. L ( ( F |` C ) " s ) C_ u ) ) )
83 82 ralbidva
 |-  ( ( ph /\ x e. CC ) -> ( A. u e. K ( x e. u -> E. w e. K ( B e. w /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) ) <-> A. u e. K ( x e. u -> E. s e. L ( ( F |` C ) " s ) C_ u ) ) )
84 83 pm5.32da
 |-  ( ph -> ( ( x e. CC /\ A. u e. K ( x e. u -> E. w e. K ( B e. w /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) ) ) <-> ( x e. CC /\ A. u e. K ( x e. u -> E. s e. L ( ( F |` C ) " s ) C_ u ) ) ) )
85 1 2 52 4 ellimc2
 |-  ( ph -> ( x e. ( F limCC B ) <-> ( x e. CC /\ A. u e. K ( x e. u -> E. w e. K ( B e. w /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) ) ) ) )
86 1 2 3 4 5 6 limcflflem
 |-  ( ph -> L e. ( Fil ` C ) )
87 fssres
 |-  ( ( F : A --> CC /\ C C_ A ) -> ( F |` C ) : C --> CC )
88 1 21 87 sylancl
 |-  ( ph -> ( F |` C ) : C --> CC )
89 isflf
 |-  ( ( K e. ( TopOn ` CC ) /\ L e. ( Fil ` C ) /\ ( F |` C ) : C --> CC ) -> ( x e. ( ( K fLimf L ) ` ( F |` C ) ) <-> ( x e. CC /\ A. u e. K ( x e. u -> E. s e. L ( ( F |` C ) " s ) C_ u ) ) ) )
90 44 86 88 89 mp3an2i
 |-  ( ph -> ( x e. ( ( K fLimf L ) ` ( F |` C ) ) <-> ( x e. CC /\ A. u e. K ( x e. u -> E. s e. L ( ( F |` C ) " s ) C_ u ) ) ) )
91 84 85 90 3bitr4d
 |-  ( ph -> ( x e. ( F limCC B ) <-> x e. ( ( K fLimf L ) ` ( F |` C ) ) ) )
92 91 eqrdv
 |-  ( ph -> ( F limCC B ) = ( ( K fLimf L ) ` ( F |` C ) ) )