| Step | Hyp | Ref | Expression | 
						
							| 1 |  | limcflf.f |  |-  ( ph -> F : A --> CC ) | 
						
							| 2 |  | limcflf.a |  |-  ( ph -> A C_ CC ) | 
						
							| 3 |  | limcflf.b |  |-  ( ph -> B e. ( ( limPt ` K ) ` A ) ) | 
						
							| 4 |  | limcflf.k |  |-  K = ( TopOpen ` CCfld ) | 
						
							| 5 |  | limcflf.c |  |-  C = ( A \ { B } ) | 
						
							| 6 |  | limcflf.l |  |-  L = ( ( ( nei ` K ) ` { B } ) |`t C ) | 
						
							| 7 |  | vex |  |-  t e. _V | 
						
							| 8 | 7 | inex1 |  |-  ( t i^i C ) e. _V | 
						
							| 9 | 8 | rgenw |  |-  A. t e. ( ( nei ` K ) ` { B } ) ( t i^i C ) e. _V | 
						
							| 10 |  | eqid |  |-  ( t e. ( ( nei ` K ) ` { B } ) |-> ( t i^i C ) ) = ( t e. ( ( nei ` K ) ` { B } ) |-> ( t i^i C ) ) | 
						
							| 11 |  | imaeq2 |  |-  ( s = ( t i^i C ) -> ( ( F |` C ) " s ) = ( ( F |` C ) " ( t i^i C ) ) ) | 
						
							| 12 |  | inss2 |  |-  ( t i^i C ) C_ C | 
						
							| 13 |  | resima2 |  |-  ( ( t i^i C ) C_ C -> ( ( F |` C ) " ( t i^i C ) ) = ( F " ( t i^i C ) ) ) | 
						
							| 14 | 12 13 | ax-mp |  |-  ( ( F |` C ) " ( t i^i C ) ) = ( F " ( t i^i C ) ) | 
						
							| 15 | 11 14 | eqtrdi |  |-  ( s = ( t i^i C ) -> ( ( F |` C ) " s ) = ( F " ( t i^i C ) ) ) | 
						
							| 16 | 15 | sseq1d |  |-  ( s = ( t i^i C ) -> ( ( ( F |` C ) " s ) C_ u <-> ( F " ( t i^i C ) ) C_ u ) ) | 
						
							| 17 | 10 16 | rexrnmptw |  |-  ( A. t e. ( ( nei ` K ) ` { B } ) ( t i^i C ) e. _V -> ( E. s e. ran ( t e. ( ( nei ` K ) ` { B } ) |-> ( t i^i C ) ) ( ( F |` C ) " s ) C_ u <-> E. t e. ( ( nei ` K ) ` { B } ) ( F " ( t i^i C ) ) C_ u ) ) | 
						
							| 18 | 9 17 | mp1i |  |-  ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) -> ( E. s e. ran ( t e. ( ( nei ` K ) ` { B } ) |-> ( t i^i C ) ) ( ( F |` C ) " s ) C_ u <-> E. t e. ( ( nei ` K ) ` { B } ) ( F " ( t i^i C ) ) C_ u ) ) | 
						
							| 19 |  | fvex |  |-  ( ( nei ` K ) ` { B } ) e. _V | 
						
							| 20 |  | difss |  |-  ( A \ { B } ) C_ A | 
						
							| 21 | 5 20 | eqsstri |  |-  C C_ A | 
						
							| 22 | 21 2 | sstrid |  |-  ( ph -> C C_ CC ) | 
						
							| 23 |  | cnex |  |-  CC e. _V | 
						
							| 24 | 23 | ssex |  |-  ( C C_ CC -> C e. _V ) | 
						
							| 25 | 22 24 | syl |  |-  ( ph -> C e. _V ) | 
						
							| 26 | 25 | ad2antrr |  |-  ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) -> C e. _V ) | 
						
							| 27 |  | restval |  |-  ( ( ( ( nei ` K ) ` { B } ) e. _V /\ C e. _V ) -> ( ( ( nei ` K ) ` { B } ) |`t C ) = ran ( t e. ( ( nei ` K ) ` { B } ) |-> ( t i^i C ) ) ) | 
						
							| 28 | 19 26 27 | sylancr |  |-  ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) -> ( ( ( nei ` K ) ` { B } ) |`t C ) = ran ( t e. ( ( nei ` K ) ` { B } ) |-> ( t i^i C ) ) ) | 
						
							| 29 | 6 28 | eqtrid |  |-  ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) -> L = ran ( t e. ( ( nei ` K ) ` { B } ) |-> ( t i^i C ) ) ) | 
						
							| 30 | 29 | rexeqdv |  |-  ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) -> ( E. s e. L ( ( F |` C ) " s ) C_ u <-> E. s e. ran ( t e. ( ( nei ` K ) ` { B } ) |-> ( t i^i C ) ) ( ( F |` C ) " s ) C_ u ) ) | 
						
							| 31 | 4 | cnfldtop |  |-  K e. Top | 
						
							| 32 |  | opnneip |  |-  ( ( K e. Top /\ w e. K /\ B e. w ) -> w e. ( ( nei ` K ) ` { B } ) ) | 
						
							| 33 | 31 32 | mp3an1 |  |-  ( ( w e. K /\ B e. w ) -> w e. ( ( nei ` K ) ` { B } ) ) | 
						
							| 34 |  | id |  |-  ( t = w -> t = w ) | 
						
							| 35 | 5 | a1i |  |-  ( t = w -> C = ( A \ { B } ) ) | 
						
							| 36 | 34 35 | ineq12d |  |-  ( t = w -> ( t i^i C ) = ( w i^i ( A \ { B } ) ) ) | 
						
							| 37 | 36 | imaeq2d |  |-  ( t = w -> ( F " ( t i^i C ) ) = ( F " ( w i^i ( A \ { B } ) ) ) ) | 
						
							| 38 | 37 | sseq1d |  |-  ( t = w -> ( ( F " ( t i^i C ) ) C_ u <-> ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) ) | 
						
							| 39 | 38 | rspcev |  |-  ( ( w e. ( ( nei ` K ) ` { B } ) /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) -> E. t e. ( ( nei ` K ) ` { B } ) ( F " ( t i^i C ) ) C_ u ) | 
						
							| 40 | 33 39 | sylan |  |-  ( ( ( w e. K /\ B e. w ) /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) -> E. t e. ( ( nei ` K ) ` { B } ) ( F " ( t i^i C ) ) C_ u ) | 
						
							| 41 | 40 | anasss |  |-  ( ( w e. K /\ ( B e. w /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) ) -> E. t e. ( ( nei ` K ) ` { B } ) ( F " ( t i^i C ) ) C_ u ) | 
						
							| 42 | 41 | rexlimiva |  |-  ( E. w e. K ( B e. w /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) -> E. t e. ( ( nei ` K ) ` { B } ) ( F " ( t i^i C ) ) C_ u ) | 
						
							| 43 |  | simprl |  |-  ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> t e. ( ( nei ` K ) ` { B } ) ) | 
						
							| 44 | 4 | cnfldtopon |  |-  K e. ( TopOn ` CC ) | 
						
							| 45 | 44 | toponunii |  |-  CC = U. K | 
						
							| 46 | 45 | neii1 |  |-  ( ( K e. Top /\ t e. ( ( nei ` K ) ` { B } ) ) -> t C_ CC ) | 
						
							| 47 | 31 43 46 | sylancr |  |-  ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> t C_ CC ) | 
						
							| 48 | 45 | ntropn |  |-  ( ( K e. Top /\ t C_ CC ) -> ( ( int ` K ) ` t ) e. K ) | 
						
							| 49 | 31 47 48 | sylancr |  |-  ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> ( ( int ` K ) ` t ) e. K ) | 
						
							| 50 | 45 | lpss |  |-  ( ( K e. Top /\ A C_ CC ) -> ( ( limPt ` K ) ` A ) C_ CC ) | 
						
							| 51 | 31 2 50 | sylancr |  |-  ( ph -> ( ( limPt ` K ) ` A ) C_ CC ) | 
						
							| 52 | 51 3 | sseldd |  |-  ( ph -> B e. CC ) | 
						
							| 53 | 52 | snssd |  |-  ( ph -> { B } C_ CC ) | 
						
							| 54 | 53 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> { B } C_ CC ) | 
						
							| 55 | 45 | neiint |  |-  ( ( K e. Top /\ { B } C_ CC /\ t C_ CC ) -> ( t e. ( ( nei ` K ) ` { B } ) <-> { B } C_ ( ( int ` K ) ` t ) ) ) | 
						
							| 56 | 31 54 47 55 | mp3an2i |  |-  ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> ( t e. ( ( nei ` K ) ` { B } ) <-> { B } C_ ( ( int ` K ) ` t ) ) ) | 
						
							| 57 | 43 56 | mpbid |  |-  ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> { B } C_ ( ( int ` K ) ` t ) ) | 
						
							| 58 | 52 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> B e. CC ) | 
						
							| 59 |  | snssg |  |-  ( B e. CC -> ( B e. ( ( int ` K ) ` t ) <-> { B } C_ ( ( int ` K ) ` t ) ) ) | 
						
							| 60 | 58 59 | syl |  |-  ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> ( B e. ( ( int ` K ) ` t ) <-> { B } C_ ( ( int ` K ) ` t ) ) ) | 
						
							| 61 | 57 60 | mpbird |  |-  ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> B e. ( ( int ` K ) ` t ) ) | 
						
							| 62 | 45 | ntrss2 |  |-  ( ( K e. Top /\ t C_ CC ) -> ( ( int ` K ) ` t ) C_ t ) | 
						
							| 63 | 31 47 62 | sylancr |  |-  ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> ( ( int ` K ) ` t ) C_ t ) | 
						
							| 64 |  | ssrin |  |-  ( ( ( int ` K ) ` t ) C_ t -> ( ( ( int ` K ) ` t ) i^i C ) C_ ( t i^i C ) ) | 
						
							| 65 |  | imass2 |  |-  ( ( ( ( int ` K ) ` t ) i^i C ) C_ ( t i^i C ) -> ( F " ( ( ( int ` K ) ` t ) i^i C ) ) C_ ( F " ( t i^i C ) ) ) | 
						
							| 66 | 63 64 65 | 3syl |  |-  ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> ( F " ( ( ( int ` K ) ` t ) i^i C ) ) C_ ( F " ( t i^i C ) ) ) | 
						
							| 67 |  | simprr |  |-  ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> ( F " ( t i^i C ) ) C_ u ) | 
						
							| 68 | 66 67 | sstrd |  |-  ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> ( F " ( ( ( int ` K ) ` t ) i^i C ) ) C_ u ) | 
						
							| 69 |  | eleq2 |  |-  ( w = ( ( int ` K ) ` t ) -> ( B e. w <-> B e. ( ( int ` K ) ` t ) ) ) | 
						
							| 70 | 5 | ineq2i |  |-  ( w i^i C ) = ( w i^i ( A \ { B } ) ) | 
						
							| 71 |  | ineq1 |  |-  ( w = ( ( int ` K ) ` t ) -> ( w i^i C ) = ( ( ( int ` K ) ` t ) i^i C ) ) | 
						
							| 72 | 70 71 | eqtr3id |  |-  ( w = ( ( int ` K ) ` t ) -> ( w i^i ( A \ { B } ) ) = ( ( ( int ` K ) ` t ) i^i C ) ) | 
						
							| 73 | 72 | imaeq2d |  |-  ( w = ( ( int ` K ) ` t ) -> ( F " ( w i^i ( A \ { B } ) ) ) = ( F " ( ( ( int ` K ) ` t ) i^i C ) ) ) | 
						
							| 74 | 73 | sseq1d |  |-  ( w = ( ( int ` K ) ` t ) -> ( ( F " ( w i^i ( A \ { B } ) ) ) C_ u <-> ( F " ( ( ( int ` K ) ` t ) i^i C ) ) C_ u ) ) | 
						
							| 75 | 69 74 | anbi12d |  |-  ( w = ( ( int ` K ) ` t ) -> ( ( B e. w /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) <-> ( B e. ( ( int ` K ) ` t ) /\ ( F " ( ( ( int ` K ) ` t ) i^i C ) ) C_ u ) ) ) | 
						
							| 76 | 75 | rspcev |  |-  ( ( ( ( int ` K ) ` t ) e. K /\ ( B e. ( ( int ` K ) ` t ) /\ ( F " ( ( ( int ` K ) ` t ) i^i C ) ) C_ u ) ) -> E. w e. K ( B e. w /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) ) | 
						
							| 77 | 49 61 68 76 | syl12anc |  |-  ( ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) /\ ( t e. ( ( nei ` K ) ` { B } ) /\ ( F " ( t i^i C ) ) C_ u ) ) -> E. w e. K ( B e. w /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) ) | 
						
							| 78 | 77 | rexlimdvaa |  |-  ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) -> ( E. t e. ( ( nei ` K ) ` { B } ) ( F " ( t i^i C ) ) C_ u -> E. w e. K ( B e. w /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) ) ) | 
						
							| 79 | 42 78 | impbid2 |  |-  ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) -> ( E. w e. K ( B e. w /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) <-> E. t e. ( ( nei ` K ) ` { B } ) ( F " ( t i^i C ) ) C_ u ) ) | 
						
							| 80 | 18 30 79 | 3bitr4rd |  |-  ( ( ( ph /\ x e. CC ) /\ ( u e. K /\ x e. u ) ) -> ( E. w e. K ( B e. w /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) <-> E. s e. L ( ( F |` C ) " s ) C_ u ) ) | 
						
							| 81 | 80 | anassrs |  |-  ( ( ( ( ph /\ x e. CC ) /\ u e. K ) /\ x e. u ) -> ( E. w e. K ( B e. w /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) <-> E. s e. L ( ( F |` C ) " s ) C_ u ) ) | 
						
							| 82 | 81 | pm5.74da |  |-  ( ( ( ph /\ x e. CC ) /\ u e. K ) -> ( ( x e. u -> E. w e. K ( B e. w /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) ) <-> ( x e. u -> E. s e. L ( ( F |` C ) " s ) C_ u ) ) ) | 
						
							| 83 | 82 | ralbidva |  |-  ( ( ph /\ x e. CC ) -> ( A. u e. K ( x e. u -> E. w e. K ( B e. w /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) ) <-> A. u e. K ( x e. u -> E. s e. L ( ( F |` C ) " s ) C_ u ) ) ) | 
						
							| 84 | 83 | pm5.32da |  |-  ( ph -> ( ( x e. CC /\ A. u e. K ( x e. u -> E. w e. K ( B e. w /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) ) ) <-> ( x e. CC /\ A. u e. K ( x e. u -> E. s e. L ( ( F |` C ) " s ) C_ u ) ) ) ) | 
						
							| 85 | 1 2 52 4 | ellimc2 |  |-  ( ph -> ( x e. ( F limCC B ) <-> ( x e. CC /\ A. u e. K ( x e. u -> E. w e. K ( B e. w /\ ( F " ( w i^i ( A \ { B } ) ) ) C_ u ) ) ) ) ) | 
						
							| 86 | 1 2 3 4 5 6 | limcflflem |  |-  ( ph -> L e. ( Fil ` C ) ) | 
						
							| 87 |  | fssres |  |-  ( ( F : A --> CC /\ C C_ A ) -> ( F |` C ) : C --> CC ) | 
						
							| 88 | 1 21 87 | sylancl |  |-  ( ph -> ( F |` C ) : C --> CC ) | 
						
							| 89 |  | isflf |  |-  ( ( K e. ( TopOn ` CC ) /\ L e. ( Fil ` C ) /\ ( F |` C ) : C --> CC ) -> ( x e. ( ( K fLimf L ) ` ( F |` C ) ) <-> ( x e. CC /\ A. u e. K ( x e. u -> E. s e. L ( ( F |` C ) " s ) C_ u ) ) ) ) | 
						
							| 90 | 44 86 88 89 | mp3an2i |  |-  ( ph -> ( x e. ( ( K fLimf L ) ` ( F |` C ) ) <-> ( x e. CC /\ A. u e. K ( x e. u -> E. s e. L ( ( F |` C ) " s ) C_ u ) ) ) ) | 
						
							| 91 | 84 85 90 | 3bitr4d |  |-  ( ph -> ( x e. ( F limCC B ) <-> x e. ( ( K fLimf L ) ` ( F |` C ) ) ) ) | 
						
							| 92 | 91 | eqrdv |  |-  ( ph -> ( F limCC B ) = ( ( K fLimf L ) ` ( F |` C ) ) ) |