| Step | Hyp | Ref | Expression | 
						
							| 1 |  | limcflf.f |  |-  ( ph -> F : A --> CC ) | 
						
							| 2 |  | limcflf.a |  |-  ( ph -> A C_ CC ) | 
						
							| 3 |  | limcflf.b |  |-  ( ph -> B e. ( ( limPt ` K ) ` A ) ) | 
						
							| 4 |  | limcflf.k |  |-  K = ( TopOpen ` CCfld ) | 
						
							| 5 |  | limcflf.c |  |-  C = ( A \ { B } ) | 
						
							| 6 |  | limcflf.l |  |-  L = ( ( ( nei ` K ) ` { B } ) |`t C ) | 
						
							| 7 | 4 | cnfldtop |  |-  K e. Top | 
						
							| 8 | 4 | cnfldtopon |  |-  K e. ( TopOn ` CC ) | 
						
							| 9 | 8 | toponunii |  |-  CC = U. K | 
						
							| 10 | 9 | islp |  |-  ( ( K e. Top /\ A C_ CC ) -> ( B e. ( ( limPt ` K ) ` A ) <-> B e. ( ( cls ` K ) ` ( A \ { B } ) ) ) ) | 
						
							| 11 | 7 2 10 | sylancr |  |-  ( ph -> ( B e. ( ( limPt ` K ) ` A ) <-> B e. ( ( cls ` K ) ` ( A \ { B } ) ) ) ) | 
						
							| 12 | 3 11 | mpbid |  |-  ( ph -> B e. ( ( cls ` K ) ` ( A \ { B } ) ) ) | 
						
							| 13 | 5 | fveq2i |  |-  ( ( cls ` K ) ` C ) = ( ( cls ` K ) ` ( A \ { B } ) ) | 
						
							| 14 | 12 13 | eleqtrrdi |  |-  ( ph -> B e. ( ( cls ` K ) ` C ) ) | 
						
							| 15 |  | difss |  |-  ( A \ { B } ) C_ A | 
						
							| 16 | 5 15 | eqsstri |  |-  C C_ A | 
						
							| 17 | 16 2 | sstrid |  |-  ( ph -> C C_ CC ) | 
						
							| 18 | 9 | lpss |  |-  ( ( K e. Top /\ A C_ CC ) -> ( ( limPt ` K ) ` A ) C_ CC ) | 
						
							| 19 | 7 2 18 | sylancr |  |-  ( ph -> ( ( limPt ` K ) ` A ) C_ CC ) | 
						
							| 20 | 19 3 | sseldd |  |-  ( ph -> B e. CC ) | 
						
							| 21 |  | trnei |  |-  ( ( K e. ( TopOn ` CC ) /\ C C_ CC /\ B e. CC ) -> ( B e. ( ( cls ` K ) ` C ) <-> ( ( ( nei ` K ) ` { B } ) |`t C ) e. ( Fil ` C ) ) ) | 
						
							| 22 | 8 17 20 21 | mp3an2i |  |-  ( ph -> ( B e. ( ( cls ` K ) ` C ) <-> ( ( ( nei ` K ) ` { B } ) |`t C ) e. ( Fil ` C ) ) ) | 
						
							| 23 | 14 22 | mpbid |  |-  ( ph -> ( ( ( nei ` K ) ` { B } ) |`t C ) e. ( Fil ` C ) ) | 
						
							| 24 | 6 23 | eqeltrid |  |-  ( ph -> L e. ( Fil ` C ) ) |