Metamath Proof Explorer


Theorem limcflflem

Description: Lemma for limcflf . (Contributed by Mario Carneiro, 25-Dec-2016)

Ref Expression
Hypotheses limcflf.f
|- ( ph -> F : A --> CC )
limcflf.a
|- ( ph -> A C_ CC )
limcflf.b
|- ( ph -> B e. ( ( limPt ` K ) ` A ) )
limcflf.k
|- K = ( TopOpen ` CCfld )
limcflf.c
|- C = ( A \ { B } )
limcflf.l
|- L = ( ( ( nei ` K ) ` { B } ) |`t C )
Assertion limcflflem
|- ( ph -> L e. ( Fil ` C ) )

Proof

Step Hyp Ref Expression
1 limcflf.f
 |-  ( ph -> F : A --> CC )
2 limcflf.a
 |-  ( ph -> A C_ CC )
3 limcflf.b
 |-  ( ph -> B e. ( ( limPt ` K ) ` A ) )
4 limcflf.k
 |-  K = ( TopOpen ` CCfld )
5 limcflf.c
 |-  C = ( A \ { B } )
6 limcflf.l
 |-  L = ( ( ( nei ` K ) ` { B } ) |`t C )
7 4 cnfldtop
 |-  K e. Top
8 4 cnfldtopon
 |-  K e. ( TopOn ` CC )
9 8 toponunii
 |-  CC = U. K
10 9 islp
 |-  ( ( K e. Top /\ A C_ CC ) -> ( B e. ( ( limPt ` K ) ` A ) <-> B e. ( ( cls ` K ) ` ( A \ { B } ) ) ) )
11 7 2 10 sylancr
 |-  ( ph -> ( B e. ( ( limPt ` K ) ` A ) <-> B e. ( ( cls ` K ) ` ( A \ { B } ) ) ) )
12 3 11 mpbid
 |-  ( ph -> B e. ( ( cls ` K ) ` ( A \ { B } ) ) )
13 5 fveq2i
 |-  ( ( cls ` K ) ` C ) = ( ( cls ` K ) ` ( A \ { B } ) )
14 12 13 eleqtrrdi
 |-  ( ph -> B e. ( ( cls ` K ) ` C ) )
15 difss
 |-  ( A \ { B } ) C_ A
16 5 15 eqsstri
 |-  C C_ A
17 16 2 sstrid
 |-  ( ph -> C C_ CC )
18 9 lpss
 |-  ( ( K e. Top /\ A C_ CC ) -> ( ( limPt ` K ) ` A ) C_ CC )
19 7 2 18 sylancr
 |-  ( ph -> ( ( limPt ` K ) ` A ) C_ CC )
20 19 3 sseldd
 |-  ( ph -> B e. CC )
21 trnei
 |-  ( ( K e. ( TopOn ` CC ) /\ C C_ CC /\ B e. CC ) -> ( B e. ( ( cls ` K ) ` C ) <-> ( ( ( nei ` K ) ` { B } ) |`t C ) e. ( Fil ` C ) ) )
22 8 17 20 21 mp3an2i
 |-  ( ph -> ( B e. ( ( cls ` K ) ` C ) <-> ( ( ( nei ` K ) ` { B } ) |`t C ) e. ( Fil ` C ) ) )
23 14 22 mpbid
 |-  ( ph -> ( ( ( nei ` K ) ` { B } ) |`t C ) e. ( Fil ` C ) )
24 6 23 eqeltrid
 |-  ( ph -> L e. ( Fil ` C ) )