Step |
Hyp |
Ref |
Expression |
1 |
|
limcval.j |
|- J = ( K |`t ( A u. { B } ) ) |
2 |
|
limcval.k |
|- K = ( TopOpen ` CCfld ) |
3 |
|
df-limc |
|- limCC = ( f e. ( CC ^pm CC ) , x e. CC |-> { y | [. ( TopOpen ` CCfld ) / j ]. ( z e. ( dom f u. { x } ) |-> if ( z = x , y , ( f ` z ) ) ) e. ( ( ( j |`t ( dom f u. { x } ) ) CnP j ) ` x ) } ) |
4 |
3
|
a1i |
|- ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) -> limCC = ( f e. ( CC ^pm CC ) , x e. CC |-> { y | [. ( TopOpen ` CCfld ) / j ]. ( z e. ( dom f u. { x } ) |-> if ( z = x , y , ( f ` z ) ) ) e. ( ( ( j |`t ( dom f u. { x } ) ) CnP j ) ` x ) } ) ) |
5 |
|
fvexd |
|- ( ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) /\ ( f = F /\ x = B ) ) -> ( TopOpen ` CCfld ) e. _V ) |
6 |
|
simplrl |
|- ( ( ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) /\ ( f = F /\ x = B ) ) /\ j = ( TopOpen ` CCfld ) ) -> f = F ) |
7 |
6
|
dmeqd |
|- ( ( ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) /\ ( f = F /\ x = B ) ) /\ j = ( TopOpen ` CCfld ) ) -> dom f = dom F ) |
8 |
|
simpll1 |
|- ( ( ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) /\ ( f = F /\ x = B ) ) /\ j = ( TopOpen ` CCfld ) ) -> F : A --> CC ) |
9 |
8
|
fdmd |
|- ( ( ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) /\ ( f = F /\ x = B ) ) /\ j = ( TopOpen ` CCfld ) ) -> dom F = A ) |
10 |
7 9
|
eqtrd |
|- ( ( ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) /\ ( f = F /\ x = B ) ) /\ j = ( TopOpen ` CCfld ) ) -> dom f = A ) |
11 |
|
simplrr |
|- ( ( ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) /\ ( f = F /\ x = B ) ) /\ j = ( TopOpen ` CCfld ) ) -> x = B ) |
12 |
11
|
sneqd |
|- ( ( ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) /\ ( f = F /\ x = B ) ) /\ j = ( TopOpen ` CCfld ) ) -> { x } = { B } ) |
13 |
10 12
|
uneq12d |
|- ( ( ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) /\ ( f = F /\ x = B ) ) /\ j = ( TopOpen ` CCfld ) ) -> ( dom f u. { x } ) = ( A u. { B } ) ) |
14 |
11
|
eqeq2d |
|- ( ( ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) /\ ( f = F /\ x = B ) ) /\ j = ( TopOpen ` CCfld ) ) -> ( z = x <-> z = B ) ) |
15 |
6
|
fveq1d |
|- ( ( ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) /\ ( f = F /\ x = B ) ) /\ j = ( TopOpen ` CCfld ) ) -> ( f ` z ) = ( F ` z ) ) |
16 |
14 15
|
ifbieq2d |
|- ( ( ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) /\ ( f = F /\ x = B ) ) /\ j = ( TopOpen ` CCfld ) ) -> if ( z = x , y , ( f ` z ) ) = if ( z = B , y , ( F ` z ) ) ) |
17 |
13 16
|
mpteq12dv |
|- ( ( ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) /\ ( f = F /\ x = B ) ) /\ j = ( TopOpen ` CCfld ) ) -> ( z e. ( dom f u. { x } ) |-> if ( z = x , y , ( f ` z ) ) ) = ( z e. ( A u. { B } ) |-> if ( z = B , y , ( F ` z ) ) ) ) |
18 |
|
simpr |
|- ( ( ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) /\ ( f = F /\ x = B ) ) /\ j = ( TopOpen ` CCfld ) ) -> j = ( TopOpen ` CCfld ) ) |
19 |
18 2
|
eqtr4di |
|- ( ( ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) /\ ( f = F /\ x = B ) ) /\ j = ( TopOpen ` CCfld ) ) -> j = K ) |
20 |
19 13
|
oveq12d |
|- ( ( ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) /\ ( f = F /\ x = B ) ) /\ j = ( TopOpen ` CCfld ) ) -> ( j |`t ( dom f u. { x } ) ) = ( K |`t ( A u. { B } ) ) ) |
21 |
20 1
|
eqtr4di |
|- ( ( ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) /\ ( f = F /\ x = B ) ) /\ j = ( TopOpen ` CCfld ) ) -> ( j |`t ( dom f u. { x } ) ) = J ) |
22 |
21 19
|
oveq12d |
|- ( ( ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) /\ ( f = F /\ x = B ) ) /\ j = ( TopOpen ` CCfld ) ) -> ( ( j |`t ( dom f u. { x } ) ) CnP j ) = ( J CnP K ) ) |
23 |
22 11
|
fveq12d |
|- ( ( ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) /\ ( f = F /\ x = B ) ) /\ j = ( TopOpen ` CCfld ) ) -> ( ( ( j |`t ( dom f u. { x } ) ) CnP j ) ` x ) = ( ( J CnP K ) ` B ) ) |
24 |
17 23
|
eleq12d |
|- ( ( ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) /\ ( f = F /\ x = B ) ) /\ j = ( TopOpen ` CCfld ) ) -> ( ( z e. ( dom f u. { x } ) |-> if ( z = x , y , ( f ` z ) ) ) e. ( ( ( j |`t ( dom f u. { x } ) ) CnP j ) ` x ) <-> ( z e. ( A u. { B } ) |-> if ( z = B , y , ( F ` z ) ) ) e. ( ( J CnP K ) ` B ) ) ) |
25 |
5 24
|
sbcied |
|- ( ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) /\ ( f = F /\ x = B ) ) -> ( [. ( TopOpen ` CCfld ) / j ]. ( z e. ( dom f u. { x } ) |-> if ( z = x , y , ( f ` z ) ) ) e. ( ( ( j |`t ( dom f u. { x } ) ) CnP j ) ` x ) <-> ( z e. ( A u. { B } ) |-> if ( z = B , y , ( F ` z ) ) ) e. ( ( J CnP K ) ` B ) ) ) |
26 |
25
|
abbidv |
|- ( ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) /\ ( f = F /\ x = B ) ) -> { y | [. ( TopOpen ` CCfld ) / j ]. ( z e. ( dom f u. { x } ) |-> if ( z = x , y , ( f ` z ) ) ) e. ( ( ( j |`t ( dom f u. { x } ) ) CnP j ) ` x ) } = { y | ( z e. ( A u. { B } ) |-> if ( z = B , y , ( F ` z ) ) ) e. ( ( J CnP K ) ` B ) } ) |
27 |
|
cnex |
|- CC e. _V |
28 |
|
elpm2r |
|- ( ( ( CC e. _V /\ CC e. _V ) /\ ( F : A --> CC /\ A C_ CC ) ) -> F e. ( CC ^pm CC ) ) |
29 |
27 27 28
|
mpanl12 |
|- ( ( F : A --> CC /\ A C_ CC ) -> F e. ( CC ^pm CC ) ) |
30 |
29
|
3adant3 |
|- ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) -> F e. ( CC ^pm CC ) ) |
31 |
|
simp3 |
|- ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) -> B e. CC ) |
32 |
|
eqid |
|- ( z e. ( A u. { B } ) |-> if ( z = B , y , ( F ` z ) ) ) = ( z e. ( A u. { B } ) |-> if ( z = B , y , ( F ` z ) ) ) |
33 |
1 2 32
|
limcvallem |
|- ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) -> ( ( z e. ( A u. { B } ) |-> if ( z = B , y , ( F ` z ) ) ) e. ( ( J CnP K ) ` B ) -> y e. CC ) ) |
34 |
33
|
abssdv |
|- ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) -> { y | ( z e. ( A u. { B } ) |-> if ( z = B , y , ( F ` z ) ) ) e. ( ( J CnP K ) ` B ) } C_ CC ) |
35 |
27
|
ssex |
|- ( { y | ( z e. ( A u. { B } ) |-> if ( z = B , y , ( F ` z ) ) ) e. ( ( J CnP K ) ` B ) } C_ CC -> { y | ( z e. ( A u. { B } ) |-> if ( z = B , y , ( F ` z ) ) ) e. ( ( J CnP K ) ` B ) } e. _V ) |
36 |
34 35
|
syl |
|- ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) -> { y | ( z e. ( A u. { B } ) |-> if ( z = B , y , ( F ` z ) ) ) e. ( ( J CnP K ) ` B ) } e. _V ) |
37 |
4 26 30 31 36
|
ovmpod |
|- ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) -> ( F limCC B ) = { y | ( z e. ( A u. { B } ) |-> if ( z = B , y , ( F ` z ) ) ) e. ( ( J CnP K ) ` B ) } ) |
38 |
37 34
|
eqsstrd |
|- ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) -> ( F limCC B ) C_ CC ) |
39 |
37 38
|
jca |
|- ( ( F : A --> CC /\ A C_ CC /\ B e. CC ) -> ( ( F limCC B ) = { y | ( z e. ( A u. { B } ) |-> if ( z = B , y , ( F ` z ) ) ) e. ( ( J CnP K ) ` B ) } /\ ( F limCC B ) C_ CC ) ) |