Step |
Hyp |
Ref |
Expression |
1 |
|
limciccioolb.1 |
|- ( ph -> A e. RR ) |
2 |
|
limciccioolb.2 |
|- ( ph -> B e. RR ) |
3 |
|
limciccioolb.3 |
|- ( ph -> A < B ) |
4 |
|
limciccioolb.4 |
|- ( ph -> F : ( A [,] B ) --> CC ) |
5 |
|
ioossicc |
|- ( A (,) B ) C_ ( A [,] B ) |
6 |
5
|
a1i |
|- ( ph -> ( A (,) B ) C_ ( A [,] B ) ) |
7 |
1 2
|
iccssred |
|- ( ph -> ( A [,] B ) C_ RR ) |
8 |
|
ax-resscn |
|- RR C_ CC |
9 |
7 8
|
sstrdi |
|- ( ph -> ( A [,] B ) C_ CC ) |
10 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
11 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t ( ( A [,] B ) u. { A } ) ) = ( ( TopOpen ` CCfld ) |`t ( ( A [,] B ) u. { A } ) ) |
12 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
13 |
12
|
a1i |
|- ( ph -> ( topGen ` ran (,) ) e. Top ) |
14 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
15 |
|
icossre |
|- ( ( A e. RR /\ B e. RR* ) -> ( A [,) B ) C_ RR ) |
16 |
1 14 15
|
syl2anc |
|- ( ph -> ( A [,) B ) C_ RR ) |
17 |
|
difssd |
|- ( ph -> ( RR \ ( A [,] B ) ) C_ RR ) |
18 |
16 17
|
unssd |
|- ( ph -> ( ( A [,) B ) u. ( RR \ ( A [,] B ) ) ) C_ RR ) |
19 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
20 |
18 19
|
sseqtrdi |
|- ( ph -> ( ( A [,) B ) u. ( RR \ ( A [,] B ) ) ) C_ U. ( topGen ` ran (,) ) ) |
21 |
|
elioore |
|- ( x e. ( -oo (,) B ) -> x e. RR ) |
22 |
21
|
ad2antlr |
|- ( ( ( ph /\ x e. ( -oo (,) B ) ) /\ A <_ x ) -> x e. RR ) |
23 |
|
simpr |
|- ( ( ( ph /\ x e. ( -oo (,) B ) ) /\ A <_ x ) -> A <_ x ) |
24 |
|
simpr |
|- ( ( ph /\ x e. ( -oo (,) B ) ) -> x e. ( -oo (,) B ) ) |
25 |
|
mnfxr |
|- -oo e. RR* |
26 |
25
|
a1i |
|- ( ( ph /\ x e. ( -oo (,) B ) ) -> -oo e. RR* ) |
27 |
14
|
adantr |
|- ( ( ph /\ x e. ( -oo (,) B ) ) -> B e. RR* ) |
28 |
|
elioo2 |
|- ( ( -oo e. RR* /\ B e. RR* ) -> ( x e. ( -oo (,) B ) <-> ( x e. RR /\ -oo < x /\ x < B ) ) ) |
29 |
26 27 28
|
syl2anc |
|- ( ( ph /\ x e. ( -oo (,) B ) ) -> ( x e. ( -oo (,) B ) <-> ( x e. RR /\ -oo < x /\ x < B ) ) ) |
30 |
24 29
|
mpbid |
|- ( ( ph /\ x e. ( -oo (,) B ) ) -> ( x e. RR /\ -oo < x /\ x < B ) ) |
31 |
30
|
simp3d |
|- ( ( ph /\ x e. ( -oo (,) B ) ) -> x < B ) |
32 |
31
|
adantr |
|- ( ( ( ph /\ x e. ( -oo (,) B ) ) /\ A <_ x ) -> x < B ) |
33 |
1
|
ad2antrr |
|- ( ( ( ph /\ x e. ( -oo (,) B ) ) /\ A <_ x ) -> A e. RR ) |
34 |
14
|
ad2antrr |
|- ( ( ( ph /\ x e. ( -oo (,) B ) ) /\ A <_ x ) -> B e. RR* ) |
35 |
|
elico2 |
|- ( ( A e. RR /\ B e. RR* ) -> ( x e. ( A [,) B ) <-> ( x e. RR /\ A <_ x /\ x < B ) ) ) |
36 |
33 34 35
|
syl2anc |
|- ( ( ( ph /\ x e. ( -oo (,) B ) ) /\ A <_ x ) -> ( x e. ( A [,) B ) <-> ( x e. RR /\ A <_ x /\ x < B ) ) ) |
37 |
22 23 32 36
|
mpbir3and |
|- ( ( ( ph /\ x e. ( -oo (,) B ) ) /\ A <_ x ) -> x e. ( A [,) B ) ) |
38 |
37
|
orcd |
|- ( ( ( ph /\ x e. ( -oo (,) B ) ) /\ A <_ x ) -> ( x e. ( A [,) B ) \/ x e. ( RR \ ( A [,] B ) ) ) ) |
39 |
21
|
ad2antlr |
|- ( ( ( ph /\ x e. ( -oo (,) B ) ) /\ -. A <_ x ) -> x e. RR ) |
40 |
|
simpr |
|- ( ( ( ph /\ x e. ( -oo (,) B ) ) /\ -. A <_ x ) -> -. A <_ x ) |
41 |
40
|
intnanrd |
|- ( ( ( ph /\ x e. ( -oo (,) B ) ) /\ -. A <_ x ) -> -. ( A <_ x /\ x <_ B ) ) |
42 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
43 |
42
|
ad2antrr |
|- ( ( ( ph /\ x e. ( -oo (,) B ) ) /\ -. A <_ x ) -> A e. RR* ) |
44 |
14
|
ad2antrr |
|- ( ( ( ph /\ x e. ( -oo (,) B ) ) /\ -. A <_ x ) -> B e. RR* ) |
45 |
39
|
rexrd |
|- ( ( ( ph /\ x e. ( -oo (,) B ) ) /\ -. A <_ x ) -> x e. RR* ) |
46 |
|
elicc4 |
|- ( ( A e. RR* /\ B e. RR* /\ x e. RR* ) -> ( x e. ( A [,] B ) <-> ( A <_ x /\ x <_ B ) ) ) |
47 |
43 44 45 46
|
syl3anc |
|- ( ( ( ph /\ x e. ( -oo (,) B ) ) /\ -. A <_ x ) -> ( x e. ( A [,] B ) <-> ( A <_ x /\ x <_ B ) ) ) |
48 |
41 47
|
mtbird |
|- ( ( ( ph /\ x e. ( -oo (,) B ) ) /\ -. A <_ x ) -> -. x e. ( A [,] B ) ) |
49 |
39 48
|
eldifd |
|- ( ( ( ph /\ x e. ( -oo (,) B ) ) /\ -. A <_ x ) -> x e. ( RR \ ( A [,] B ) ) ) |
50 |
49
|
olcd |
|- ( ( ( ph /\ x e. ( -oo (,) B ) ) /\ -. A <_ x ) -> ( x e. ( A [,) B ) \/ x e. ( RR \ ( A [,] B ) ) ) ) |
51 |
38 50
|
pm2.61dan |
|- ( ( ph /\ x e. ( -oo (,) B ) ) -> ( x e. ( A [,) B ) \/ x e. ( RR \ ( A [,] B ) ) ) ) |
52 |
|
elun |
|- ( x e. ( ( A [,) B ) u. ( RR \ ( A [,] B ) ) ) <-> ( x e. ( A [,) B ) \/ x e. ( RR \ ( A [,] B ) ) ) ) |
53 |
51 52
|
sylibr |
|- ( ( ph /\ x e. ( -oo (,) B ) ) -> x e. ( ( A [,) B ) u. ( RR \ ( A [,] B ) ) ) ) |
54 |
53
|
ralrimiva |
|- ( ph -> A. x e. ( -oo (,) B ) x e. ( ( A [,) B ) u. ( RR \ ( A [,] B ) ) ) ) |
55 |
|
dfss3 |
|- ( ( -oo (,) B ) C_ ( ( A [,) B ) u. ( RR \ ( A [,] B ) ) ) <-> A. x e. ( -oo (,) B ) x e. ( ( A [,) B ) u. ( RR \ ( A [,] B ) ) ) ) |
56 |
54 55
|
sylibr |
|- ( ph -> ( -oo (,) B ) C_ ( ( A [,) B ) u. ( RR \ ( A [,] B ) ) ) ) |
57 |
|
eqid |
|- U. ( topGen ` ran (,) ) = U. ( topGen ` ran (,) ) |
58 |
57
|
ntrss |
|- ( ( ( topGen ` ran (,) ) e. Top /\ ( ( A [,) B ) u. ( RR \ ( A [,] B ) ) ) C_ U. ( topGen ` ran (,) ) /\ ( -oo (,) B ) C_ ( ( A [,) B ) u. ( RR \ ( A [,] B ) ) ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( -oo (,) B ) ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` ( ( A [,) B ) u. ( RR \ ( A [,] B ) ) ) ) ) |
59 |
13 20 56 58
|
syl3anc |
|- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( -oo (,) B ) ) C_ ( ( int ` ( topGen ` ran (,) ) ) ` ( ( A [,) B ) u. ( RR \ ( A [,] B ) ) ) ) ) |
60 |
25
|
a1i |
|- ( ph -> -oo e. RR* ) |
61 |
1
|
mnfltd |
|- ( ph -> -oo < A ) |
62 |
60 14 1 61 3
|
eliood |
|- ( ph -> A e. ( -oo (,) B ) ) |
63 |
|
iooretop |
|- ( -oo (,) B ) e. ( topGen ` ran (,) ) |
64 |
63
|
a1i |
|- ( ph -> ( -oo (,) B ) e. ( topGen ` ran (,) ) ) |
65 |
|
isopn3i |
|- ( ( ( topGen ` ran (,) ) e. Top /\ ( -oo (,) B ) e. ( topGen ` ran (,) ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( -oo (,) B ) ) = ( -oo (,) B ) ) |
66 |
13 64 65
|
syl2anc |
|- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( -oo (,) B ) ) = ( -oo (,) B ) ) |
67 |
62 66
|
eleqtrrd |
|- ( ph -> A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( -oo (,) B ) ) ) |
68 |
59 67
|
sseldd |
|- ( ph -> A e. ( ( int ` ( topGen ` ran (,) ) ) ` ( ( A [,) B ) u. ( RR \ ( A [,] B ) ) ) ) ) |
69 |
1
|
leidd |
|- ( ph -> A <_ A ) |
70 |
1 2 3
|
ltled |
|- ( ph -> A <_ B ) |
71 |
1 2 1 69 70
|
eliccd |
|- ( ph -> A e. ( A [,] B ) ) |
72 |
68 71
|
elind |
|- ( ph -> A e. ( ( ( int ` ( topGen ` ran (,) ) ) ` ( ( A [,) B ) u. ( RR \ ( A [,] B ) ) ) ) i^i ( A [,] B ) ) ) |
73 |
|
icossicc |
|- ( A [,) B ) C_ ( A [,] B ) |
74 |
73
|
a1i |
|- ( ph -> ( A [,) B ) C_ ( A [,] B ) ) |
75 |
|
eqid |
|- ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) = ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) |
76 |
19 75
|
restntr |
|- ( ( ( topGen ` ran (,) ) e. Top /\ ( A [,] B ) C_ RR /\ ( A [,) B ) C_ ( A [,] B ) ) -> ( ( int ` ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) ` ( A [,) B ) ) = ( ( ( int ` ( topGen ` ran (,) ) ) ` ( ( A [,) B ) u. ( RR \ ( A [,] B ) ) ) ) i^i ( A [,] B ) ) ) |
77 |
13 7 74 76
|
syl3anc |
|- ( ph -> ( ( int ` ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) ` ( A [,) B ) ) = ( ( ( int ` ( topGen ` ran (,) ) ) ` ( ( A [,) B ) u. ( RR \ ( A [,] B ) ) ) ) i^i ( A [,] B ) ) ) |
78 |
72 77
|
eleqtrrd |
|- ( ph -> A e. ( ( int ` ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) ` ( A [,) B ) ) ) |
79 |
|
eqid |
|- ( topGen ` ran (,) ) = ( topGen ` ran (,) ) |
80 |
10 79
|
rerest |
|- ( ( A [,] B ) C_ RR -> ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) = ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) |
81 |
7 80
|
syl |
|- ( ph -> ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) = ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) |
82 |
81
|
eqcomd |
|- ( ph -> ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) = ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) ) |
83 |
82
|
fveq2d |
|- ( ph -> ( int ` ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) = ( int ` ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) ) ) |
84 |
83
|
fveq1d |
|- ( ph -> ( ( int ` ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) ` ( A [,) B ) ) = ( ( int ` ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) ) ` ( A [,) B ) ) ) |
85 |
78 84
|
eleqtrd |
|- ( ph -> A e. ( ( int ` ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) ) ` ( A [,) B ) ) ) |
86 |
71
|
snssd |
|- ( ph -> { A } C_ ( A [,] B ) ) |
87 |
|
ssequn2 |
|- ( { A } C_ ( A [,] B ) <-> ( ( A [,] B ) u. { A } ) = ( A [,] B ) ) |
88 |
86 87
|
sylib |
|- ( ph -> ( ( A [,] B ) u. { A } ) = ( A [,] B ) ) |
89 |
88
|
eqcomd |
|- ( ph -> ( A [,] B ) = ( ( A [,] B ) u. { A } ) ) |
90 |
89
|
oveq2d |
|- ( ph -> ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) = ( ( TopOpen ` CCfld ) |`t ( ( A [,] B ) u. { A } ) ) ) |
91 |
90
|
fveq2d |
|- ( ph -> ( int ` ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) ) = ( int ` ( ( TopOpen ` CCfld ) |`t ( ( A [,] B ) u. { A } ) ) ) ) |
92 |
|
uncom |
|- ( ( A (,) B ) u. { A } ) = ( { A } u. ( A (,) B ) ) |
93 |
|
snunioo |
|- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( { A } u. ( A (,) B ) ) = ( A [,) B ) ) |
94 |
42 14 3 93
|
syl3anc |
|- ( ph -> ( { A } u. ( A (,) B ) ) = ( A [,) B ) ) |
95 |
92 94
|
eqtr2id |
|- ( ph -> ( A [,) B ) = ( ( A (,) B ) u. { A } ) ) |
96 |
91 95
|
fveq12d |
|- ( ph -> ( ( int ` ( ( TopOpen ` CCfld ) |`t ( A [,] B ) ) ) ` ( A [,) B ) ) = ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( A [,] B ) u. { A } ) ) ) ` ( ( A (,) B ) u. { A } ) ) ) |
97 |
85 96
|
eleqtrd |
|- ( ph -> A e. ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( A [,] B ) u. { A } ) ) ) ` ( ( A (,) B ) u. { A } ) ) ) |
98 |
4 6 9 10 11 97
|
limcres |
|- ( ph -> ( ( F |` ( A (,) B ) ) limCC A ) = ( F limCC A ) ) |