Step |
Hyp |
Ref |
Expression |
1 |
|
limciun.1 |
|- ( ph -> A e. Fin ) |
2 |
|
limciun.2 |
|- ( ph -> A. x e. A B C_ CC ) |
3 |
|
limciun.3 |
|- ( ph -> F : U_ x e. A B --> CC ) |
4 |
|
limciun.4 |
|- ( ph -> C e. CC ) |
5 |
|
limccl |
|- ( F limCC C ) C_ CC |
6 |
|
limcresi |
|- ( F limCC C ) C_ ( ( F |` B ) limCC C ) |
7 |
6
|
rgenw |
|- A. x e. A ( F limCC C ) C_ ( ( F |` B ) limCC C ) |
8 |
|
ssiin |
|- ( ( F limCC C ) C_ |^|_ x e. A ( ( F |` B ) limCC C ) <-> A. x e. A ( F limCC C ) C_ ( ( F |` B ) limCC C ) ) |
9 |
7 8
|
mpbir |
|- ( F limCC C ) C_ |^|_ x e. A ( ( F |` B ) limCC C ) |
10 |
5 9
|
ssini |
|- ( F limCC C ) C_ ( CC i^i |^|_ x e. A ( ( F |` B ) limCC C ) ) |
11 |
10
|
a1i |
|- ( ph -> ( F limCC C ) C_ ( CC i^i |^|_ x e. A ( ( F |` B ) limCC C ) ) ) |
12 |
|
elriin |
|- ( y e. ( CC i^i |^|_ x e. A ( ( F |` B ) limCC C ) ) <-> ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) |
13 |
|
simprl |
|- ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) -> y e. CC ) |
14 |
1
|
ad2antrr |
|- ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) -> A e. Fin ) |
15 |
|
simplrr |
|- ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) -> A. x e. A y e. ( ( F |` B ) limCC C ) ) |
16 |
|
nfcv |
|- F/_ x F |
17 |
|
nfcsb1v |
|- F/_ x [_ a / x ]_ B |
18 |
16 17
|
nfres |
|- F/_ x ( F |` [_ a / x ]_ B ) |
19 |
|
nfcv |
|- F/_ x limCC |
20 |
|
nfcv |
|- F/_ x C |
21 |
18 19 20
|
nfov |
|- F/_ x ( ( F |` [_ a / x ]_ B ) limCC C ) |
22 |
21
|
nfcri |
|- F/ x y e. ( ( F |` [_ a / x ]_ B ) limCC C ) |
23 |
|
csbeq1a |
|- ( x = a -> B = [_ a / x ]_ B ) |
24 |
23
|
reseq2d |
|- ( x = a -> ( F |` B ) = ( F |` [_ a / x ]_ B ) ) |
25 |
24
|
oveq1d |
|- ( x = a -> ( ( F |` B ) limCC C ) = ( ( F |` [_ a / x ]_ B ) limCC C ) ) |
26 |
25
|
eleq2d |
|- ( x = a -> ( y e. ( ( F |` B ) limCC C ) <-> y e. ( ( F |` [_ a / x ]_ B ) limCC C ) ) ) |
27 |
22 26
|
rspc |
|- ( a e. A -> ( A. x e. A y e. ( ( F |` B ) limCC C ) -> y e. ( ( F |` [_ a / x ]_ B ) limCC C ) ) ) |
28 |
15 27
|
mpan9 |
|- ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ a e. A ) -> y e. ( ( F |` [_ a / x ]_ B ) limCC C ) ) |
29 |
3
|
ad2antrr |
|- ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ a e. A ) -> F : U_ x e. A B --> CC ) |
30 |
|
ssiun2 |
|- ( a e. A -> [_ a / x ]_ B C_ U_ a e. A [_ a / x ]_ B ) |
31 |
|
nfcv |
|- F/_ a B |
32 |
31 17 23
|
cbviun |
|- U_ x e. A B = U_ a e. A [_ a / x ]_ B |
33 |
30 32
|
sseqtrrdi |
|- ( a e. A -> [_ a / x ]_ B C_ U_ x e. A B ) |
34 |
33
|
adantl |
|- ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ a e. A ) -> [_ a / x ]_ B C_ U_ x e. A B ) |
35 |
29 34
|
fssresd |
|- ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ a e. A ) -> ( F |` [_ a / x ]_ B ) : [_ a / x ]_ B --> CC ) |
36 |
|
simpr |
|- ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ a e. A ) -> a e. A ) |
37 |
2
|
ad2antrr |
|- ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ a e. A ) -> A. x e. A B C_ CC ) |
38 |
|
nfcv |
|- F/_ x CC |
39 |
17 38
|
nfss |
|- F/ x [_ a / x ]_ B C_ CC |
40 |
23
|
sseq1d |
|- ( x = a -> ( B C_ CC <-> [_ a / x ]_ B C_ CC ) ) |
41 |
39 40
|
rspc |
|- ( a e. A -> ( A. x e. A B C_ CC -> [_ a / x ]_ B C_ CC ) ) |
42 |
36 37 41
|
sylc |
|- ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ a e. A ) -> [_ a / x ]_ B C_ CC ) |
43 |
4
|
ad2antrr |
|- ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ a e. A ) -> C e. CC ) |
44 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
45 |
35 42 43 44
|
ellimc2 |
|- ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ a e. A ) -> ( y e. ( ( F |` [_ a / x ]_ B ) limCC C ) <-> ( y e. CC /\ A. u e. ( TopOpen ` CCfld ) ( y e. u -> E. k e. ( TopOpen ` CCfld ) ( C e. k /\ ( ( F |` [_ a / x ]_ B ) " ( k i^i ( [_ a / x ]_ B \ { C } ) ) ) C_ u ) ) ) ) ) |
46 |
45
|
adantlr |
|- ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ a e. A ) -> ( y e. ( ( F |` [_ a / x ]_ B ) limCC C ) <-> ( y e. CC /\ A. u e. ( TopOpen ` CCfld ) ( y e. u -> E. k e. ( TopOpen ` CCfld ) ( C e. k /\ ( ( F |` [_ a / x ]_ B ) " ( k i^i ( [_ a / x ]_ B \ { C } ) ) ) C_ u ) ) ) ) ) |
47 |
28 46
|
mpbid |
|- ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ a e. A ) -> ( y e. CC /\ A. u e. ( TopOpen ` CCfld ) ( y e. u -> E. k e. ( TopOpen ` CCfld ) ( C e. k /\ ( ( F |` [_ a / x ]_ B ) " ( k i^i ( [_ a / x ]_ B \ { C } ) ) ) C_ u ) ) ) ) |
48 |
47
|
simprd |
|- ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ a e. A ) -> A. u e. ( TopOpen ` CCfld ) ( y e. u -> E. k e. ( TopOpen ` CCfld ) ( C e. k /\ ( ( F |` [_ a / x ]_ B ) " ( k i^i ( [_ a / x ]_ B \ { C } ) ) ) C_ u ) ) ) |
49 |
|
simplrl |
|- ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ a e. A ) -> u e. ( TopOpen ` CCfld ) ) |
50 |
|
simplrr |
|- ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ a e. A ) -> y e. u ) |
51 |
|
rsp |
|- ( A. u e. ( TopOpen ` CCfld ) ( y e. u -> E. k e. ( TopOpen ` CCfld ) ( C e. k /\ ( ( F |` [_ a / x ]_ B ) " ( k i^i ( [_ a / x ]_ B \ { C } ) ) ) C_ u ) ) -> ( u e. ( TopOpen ` CCfld ) -> ( y e. u -> E. k e. ( TopOpen ` CCfld ) ( C e. k /\ ( ( F |` [_ a / x ]_ B ) " ( k i^i ( [_ a / x ]_ B \ { C } ) ) ) C_ u ) ) ) ) |
52 |
48 49 50 51
|
syl3c |
|- ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ a e. A ) -> E. k e. ( TopOpen ` CCfld ) ( C e. k /\ ( ( F |` [_ a / x ]_ B ) " ( k i^i ( [_ a / x ]_ B \ { C } ) ) ) C_ u ) ) |
53 |
52
|
ralrimiva |
|- ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) -> A. a e. A E. k e. ( TopOpen ` CCfld ) ( C e. k /\ ( ( F |` [_ a / x ]_ B ) " ( k i^i ( [_ a / x ]_ B \ { C } ) ) ) C_ u ) ) |
54 |
|
nfv |
|- F/ a E. k e. ( TopOpen ` CCfld ) ( C e. k /\ ( ( F |` B ) " ( k i^i ( B \ { C } ) ) ) C_ u ) |
55 |
|
nfcv |
|- F/_ x ( TopOpen ` CCfld ) |
56 |
|
nfv |
|- F/ x C e. k |
57 |
|
nfcv |
|- F/_ x k |
58 |
|
nfcv |
|- F/_ x { C } |
59 |
17 58
|
nfdif |
|- F/_ x ( [_ a / x ]_ B \ { C } ) |
60 |
57 59
|
nfin |
|- F/_ x ( k i^i ( [_ a / x ]_ B \ { C } ) ) |
61 |
18 60
|
nfima |
|- F/_ x ( ( F |` [_ a / x ]_ B ) " ( k i^i ( [_ a / x ]_ B \ { C } ) ) ) |
62 |
|
nfcv |
|- F/_ x u |
63 |
61 62
|
nfss |
|- F/ x ( ( F |` [_ a / x ]_ B ) " ( k i^i ( [_ a / x ]_ B \ { C } ) ) ) C_ u |
64 |
56 63
|
nfan |
|- F/ x ( C e. k /\ ( ( F |` [_ a / x ]_ B ) " ( k i^i ( [_ a / x ]_ B \ { C } ) ) ) C_ u ) |
65 |
55 64
|
nfrex |
|- F/ x E. k e. ( TopOpen ` CCfld ) ( C e. k /\ ( ( F |` [_ a / x ]_ B ) " ( k i^i ( [_ a / x ]_ B \ { C } ) ) ) C_ u ) |
66 |
23
|
difeq1d |
|- ( x = a -> ( B \ { C } ) = ( [_ a / x ]_ B \ { C } ) ) |
67 |
66
|
ineq2d |
|- ( x = a -> ( k i^i ( B \ { C } ) ) = ( k i^i ( [_ a / x ]_ B \ { C } ) ) ) |
68 |
24 67
|
imaeq12d |
|- ( x = a -> ( ( F |` B ) " ( k i^i ( B \ { C } ) ) ) = ( ( F |` [_ a / x ]_ B ) " ( k i^i ( [_ a / x ]_ B \ { C } ) ) ) ) |
69 |
68
|
sseq1d |
|- ( x = a -> ( ( ( F |` B ) " ( k i^i ( B \ { C } ) ) ) C_ u <-> ( ( F |` [_ a / x ]_ B ) " ( k i^i ( [_ a / x ]_ B \ { C } ) ) ) C_ u ) ) |
70 |
69
|
anbi2d |
|- ( x = a -> ( ( C e. k /\ ( ( F |` B ) " ( k i^i ( B \ { C } ) ) ) C_ u ) <-> ( C e. k /\ ( ( F |` [_ a / x ]_ B ) " ( k i^i ( [_ a / x ]_ B \ { C } ) ) ) C_ u ) ) ) |
71 |
70
|
rexbidv |
|- ( x = a -> ( E. k e. ( TopOpen ` CCfld ) ( C e. k /\ ( ( F |` B ) " ( k i^i ( B \ { C } ) ) ) C_ u ) <-> E. k e. ( TopOpen ` CCfld ) ( C e. k /\ ( ( F |` [_ a / x ]_ B ) " ( k i^i ( [_ a / x ]_ B \ { C } ) ) ) C_ u ) ) ) |
72 |
54 65 71
|
cbvralw |
|- ( A. x e. A E. k e. ( TopOpen ` CCfld ) ( C e. k /\ ( ( F |` B ) " ( k i^i ( B \ { C } ) ) ) C_ u ) <-> A. a e. A E. k e. ( TopOpen ` CCfld ) ( C e. k /\ ( ( F |` [_ a / x ]_ B ) " ( k i^i ( [_ a / x ]_ B \ { C } ) ) ) C_ u ) ) |
73 |
53 72
|
sylibr |
|- ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) -> A. x e. A E. k e. ( TopOpen ` CCfld ) ( C e. k /\ ( ( F |` B ) " ( k i^i ( B \ { C } ) ) ) C_ u ) ) |
74 |
|
eleq2 |
|- ( k = ( g ` x ) -> ( C e. k <-> C e. ( g ` x ) ) ) |
75 |
|
ineq1 |
|- ( k = ( g ` x ) -> ( k i^i ( B \ { C } ) ) = ( ( g ` x ) i^i ( B \ { C } ) ) ) |
76 |
75
|
imaeq2d |
|- ( k = ( g ` x ) -> ( ( F |` B ) " ( k i^i ( B \ { C } ) ) ) = ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) ) |
77 |
76
|
sseq1d |
|- ( k = ( g ` x ) -> ( ( ( F |` B ) " ( k i^i ( B \ { C } ) ) ) C_ u <-> ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) |
78 |
74 77
|
anbi12d |
|- ( k = ( g ` x ) -> ( ( C e. k /\ ( ( F |` B ) " ( k i^i ( B \ { C } ) ) ) C_ u ) <-> ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) ) |
79 |
78
|
ac6sfi |
|- ( ( A e. Fin /\ A. x e. A E. k e. ( TopOpen ` CCfld ) ( C e. k /\ ( ( F |` B ) " ( k i^i ( B \ { C } ) ) ) C_ u ) ) -> E. g ( g : A --> ( TopOpen ` CCfld ) /\ A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) ) |
80 |
14 73 79
|
syl2anc |
|- ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) -> E. g ( g : A --> ( TopOpen ` CCfld ) /\ A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) ) |
81 |
44
|
cnfldtop |
|- ( TopOpen ` CCfld ) e. Top |
82 |
|
frn |
|- ( g : A --> ( TopOpen ` CCfld ) -> ran g C_ ( TopOpen ` CCfld ) ) |
83 |
82
|
ad2antrl |
|- ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ ( g : A --> ( TopOpen ` CCfld ) /\ A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) ) -> ran g C_ ( TopOpen ` CCfld ) ) |
84 |
14
|
adantr |
|- ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ ( g : A --> ( TopOpen ` CCfld ) /\ A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) ) -> A e. Fin ) |
85 |
|
ffn |
|- ( g : A --> ( TopOpen ` CCfld ) -> g Fn A ) |
86 |
85
|
ad2antrl |
|- ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ ( g : A --> ( TopOpen ` CCfld ) /\ A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) ) -> g Fn A ) |
87 |
|
dffn4 |
|- ( g Fn A <-> g : A -onto-> ran g ) |
88 |
86 87
|
sylib |
|- ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ ( g : A --> ( TopOpen ` CCfld ) /\ A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) ) -> g : A -onto-> ran g ) |
89 |
|
fofi |
|- ( ( A e. Fin /\ g : A -onto-> ran g ) -> ran g e. Fin ) |
90 |
84 88 89
|
syl2anc |
|- ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ ( g : A --> ( TopOpen ` CCfld ) /\ A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) ) -> ran g e. Fin ) |
91 |
|
unicntop |
|- CC = U. ( TopOpen ` CCfld ) |
92 |
91
|
rintopn |
|- ( ( ( TopOpen ` CCfld ) e. Top /\ ran g C_ ( TopOpen ` CCfld ) /\ ran g e. Fin ) -> ( CC i^i |^| ran g ) e. ( TopOpen ` CCfld ) ) |
93 |
81 83 90 92
|
mp3an2i |
|- ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ ( g : A --> ( TopOpen ` CCfld ) /\ A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) ) -> ( CC i^i |^| ran g ) e. ( TopOpen ` CCfld ) ) |
94 |
4
|
adantr |
|- ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) -> C e. CC ) |
95 |
94
|
ad2antrr |
|- ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ ( g : A --> ( TopOpen ` CCfld ) /\ A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) ) -> C e. CC ) |
96 |
|
simpl |
|- ( ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) -> C e. ( g ` x ) ) |
97 |
96
|
ralimi |
|- ( A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) -> A. x e. A C e. ( g ` x ) ) |
98 |
97
|
ad2antll |
|- ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ ( g : A --> ( TopOpen ` CCfld ) /\ A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) ) -> A. x e. A C e. ( g ` x ) ) |
99 |
|
eleq2 |
|- ( z = ( g ` x ) -> ( C e. z <-> C e. ( g ` x ) ) ) |
100 |
99
|
ralrn |
|- ( g Fn A -> ( A. z e. ran g C e. z <-> A. x e. A C e. ( g ` x ) ) ) |
101 |
86 100
|
syl |
|- ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ ( g : A --> ( TopOpen ` CCfld ) /\ A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) ) -> ( A. z e. ran g C e. z <-> A. x e. A C e. ( g ` x ) ) ) |
102 |
98 101
|
mpbird |
|- ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ ( g : A --> ( TopOpen ` CCfld ) /\ A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) ) -> A. z e. ran g C e. z ) |
103 |
|
elrint |
|- ( C e. ( CC i^i |^| ran g ) <-> ( C e. CC /\ A. z e. ran g C e. z ) ) |
104 |
95 102 103
|
sylanbrc |
|- ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ ( g : A --> ( TopOpen ` CCfld ) /\ A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) ) -> C e. ( CC i^i |^| ran g ) ) |
105 |
|
indifcom |
|- ( ( CC i^i |^| ran g ) i^i ( U_ x e. A B \ { C } ) ) = ( U_ x e. A B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) |
106 |
|
iunin1 |
|- U_ x e. A ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) = ( U_ x e. A B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) |
107 |
105 106
|
eqtr4i |
|- ( ( CC i^i |^| ran g ) i^i ( U_ x e. A B \ { C } ) ) = U_ x e. A ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) |
108 |
107
|
imaeq2i |
|- ( F " ( ( CC i^i |^| ran g ) i^i ( U_ x e. A B \ { C } ) ) ) = ( F " U_ x e. A ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) ) |
109 |
|
imaiun |
|- ( F " U_ x e. A ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) ) = U_ x e. A ( F " ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) ) |
110 |
108 109
|
eqtri |
|- ( F " ( ( CC i^i |^| ran g ) i^i ( U_ x e. A B \ { C } ) ) ) = U_ x e. A ( F " ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) ) |
111 |
|
inss2 |
|- ( CC i^i |^| ran g ) C_ |^| ran g |
112 |
|
fnfvelrn |
|- ( ( g Fn A /\ x e. A ) -> ( g ` x ) e. ran g ) |
113 |
85 112
|
sylan |
|- ( ( g : A --> ( TopOpen ` CCfld ) /\ x e. A ) -> ( g ` x ) e. ran g ) |
114 |
|
intss1 |
|- ( ( g ` x ) e. ran g -> |^| ran g C_ ( g ` x ) ) |
115 |
113 114
|
syl |
|- ( ( g : A --> ( TopOpen ` CCfld ) /\ x e. A ) -> |^| ran g C_ ( g ` x ) ) |
116 |
111 115
|
sstrid |
|- ( ( g : A --> ( TopOpen ` CCfld ) /\ x e. A ) -> ( CC i^i |^| ran g ) C_ ( g ` x ) ) |
117 |
116
|
ssdifd |
|- ( ( g : A --> ( TopOpen ` CCfld ) /\ x e. A ) -> ( ( CC i^i |^| ran g ) \ { C } ) C_ ( ( g ` x ) \ { C } ) ) |
118 |
|
sslin |
|- ( ( ( CC i^i |^| ran g ) \ { C } ) C_ ( ( g ` x ) \ { C } ) -> ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) C_ ( B i^i ( ( g ` x ) \ { C } ) ) ) |
119 |
|
imass2 |
|- ( ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) C_ ( B i^i ( ( g ` x ) \ { C } ) ) -> ( F " ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) ) C_ ( F " ( B i^i ( ( g ` x ) \ { C } ) ) ) ) |
120 |
117 118 119
|
3syl |
|- ( ( g : A --> ( TopOpen ` CCfld ) /\ x e. A ) -> ( F " ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) ) C_ ( F " ( B i^i ( ( g ` x ) \ { C } ) ) ) ) |
121 |
|
indifcom |
|- ( ( g ` x ) i^i ( B \ { C } ) ) = ( B i^i ( ( g ` x ) \ { C } ) ) |
122 |
121
|
imaeq2i |
|- ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) = ( ( F |` B ) " ( B i^i ( ( g ` x ) \ { C } ) ) ) |
123 |
|
inss1 |
|- ( B i^i ( ( g ` x ) \ { C } ) ) C_ B |
124 |
|
resima2 |
|- ( ( B i^i ( ( g ` x ) \ { C } ) ) C_ B -> ( ( F |` B ) " ( B i^i ( ( g ` x ) \ { C } ) ) ) = ( F " ( B i^i ( ( g ` x ) \ { C } ) ) ) ) |
125 |
123 124
|
ax-mp |
|- ( ( F |` B ) " ( B i^i ( ( g ` x ) \ { C } ) ) ) = ( F " ( B i^i ( ( g ` x ) \ { C } ) ) ) |
126 |
122 125
|
eqtri |
|- ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) = ( F " ( B i^i ( ( g ` x ) \ { C } ) ) ) |
127 |
120 126
|
sseqtrrdi |
|- ( ( g : A --> ( TopOpen ` CCfld ) /\ x e. A ) -> ( F " ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) ) C_ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) ) |
128 |
|
sstr2 |
|- ( ( F " ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) ) C_ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) -> ( ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u -> ( F " ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) ) C_ u ) ) |
129 |
127 128
|
syl |
|- ( ( g : A --> ( TopOpen ` CCfld ) /\ x e. A ) -> ( ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u -> ( F " ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) ) C_ u ) ) |
130 |
129
|
adantld |
|- ( ( g : A --> ( TopOpen ` CCfld ) /\ x e. A ) -> ( ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) -> ( F " ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) ) C_ u ) ) |
131 |
130
|
ralimdva |
|- ( g : A --> ( TopOpen ` CCfld ) -> ( A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) -> A. x e. A ( F " ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) ) C_ u ) ) |
132 |
131
|
imp |
|- ( ( g : A --> ( TopOpen ` CCfld ) /\ A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) -> A. x e. A ( F " ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) ) C_ u ) |
133 |
132
|
adantl |
|- ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ ( g : A --> ( TopOpen ` CCfld ) /\ A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) ) -> A. x e. A ( F " ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) ) C_ u ) |
134 |
|
iunss |
|- ( U_ x e. A ( F " ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) ) C_ u <-> A. x e. A ( F " ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) ) C_ u ) |
135 |
133 134
|
sylibr |
|- ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ ( g : A --> ( TopOpen ` CCfld ) /\ A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) ) -> U_ x e. A ( F " ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) ) C_ u ) |
136 |
110 135
|
eqsstrid |
|- ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ ( g : A --> ( TopOpen ` CCfld ) /\ A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) ) -> ( F " ( ( CC i^i |^| ran g ) i^i ( U_ x e. A B \ { C } ) ) ) C_ u ) |
137 |
|
eleq2 |
|- ( v = ( CC i^i |^| ran g ) -> ( C e. v <-> C e. ( CC i^i |^| ran g ) ) ) |
138 |
|
ineq1 |
|- ( v = ( CC i^i |^| ran g ) -> ( v i^i ( U_ x e. A B \ { C } ) ) = ( ( CC i^i |^| ran g ) i^i ( U_ x e. A B \ { C } ) ) ) |
139 |
138
|
imaeq2d |
|- ( v = ( CC i^i |^| ran g ) -> ( F " ( v i^i ( U_ x e. A B \ { C } ) ) ) = ( F " ( ( CC i^i |^| ran g ) i^i ( U_ x e. A B \ { C } ) ) ) ) |
140 |
139
|
sseq1d |
|- ( v = ( CC i^i |^| ran g ) -> ( ( F " ( v i^i ( U_ x e. A B \ { C } ) ) ) C_ u <-> ( F " ( ( CC i^i |^| ran g ) i^i ( U_ x e. A B \ { C } ) ) ) C_ u ) ) |
141 |
137 140
|
anbi12d |
|- ( v = ( CC i^i |^| ran g ) -> ( ( C e. v /\ ( F " ( v i^i ( U_ x e. A B \ { C } ) ) ) C_ u ) <-> ( C e. ( CC i^i |^| ran g ) /\ ( F " ( ( CC i^i |^| ran g ) i^i ( U_ x e. A B \ { C } ) ) ) C_ u ) ) ) |
142 |
141
|
rspcev |
|- ( ( ( CC i^i |^| ran g ) e. ( TopOpen ` CCfld ) /\ ( C e. ( CC i^i |^| ran g ) /\ ( F " ( ( CC i^i |^| ran g ) i^i ( U_ x e. A B \ { C } ) ) ) C_ u ) ) -> E. v e. ( TopOpen ` CCfld ) ( C e. v /\ ( F " ( v i^i ( U_ x e. A B \ { C } ) ) ) C_ u ) ) |
143 |
93 104 136 142
|
syl12anc |
|- ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ ( g : A --> ( TopOpen ` CCfld ) /\ A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) ) -> E. v e. ( TopOpen ` CCfld ) ( C e. v /\ ( F " ( v i^i ( U_ x e. A B \ { C } ) ) ) C_ u ) ) |
144 |
80 143
|
exlimddv |
|- ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) -> E. v e. ( TopOpen ` CCfld ) ( C e. v /\ ( F " ( v i^i ( U_ x e. A B \ { C } ) ) ) C_ u ) ) |
145 |
144
|
expr |
|- ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ u e. ( TopOpen ` CCfld ) ) -> ( y e. u -> E. v e. ( TopOpen ` CCfld ) ( C e. v /\ ( F " ( v i^i ( U_ x e. A B \ { C } ) ) ) C_ u ) ) ) |
146 |
145
|
ralrimiva |
|- ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) -> A. u e. ( TopOpen ` CCfld ) ( y e. u -> E. v e. ( TopOpen ` CCfld ) ( C e. v /\ ( F " ( v i^i ( U_ x e. A B \ { C } ) ) ) C_ u ) ) ) |
147 |
3
|
adantr |
|- ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) -> F : U_ x e. A B --> CC ) |
148 |
|
iunss |
|- ( U_ x e. A B C_ CC <-> A. x e. A B C_ CC ) |
149 |
2 148
|
sylibr |
|- ( ph -> U_ x e. A B C_ CC ) |
150 |
149
|
adantr |
|- ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) -> U_ x e. A B C_ CC ) |
151 |
147 150 94 44
|
ellimc2 |
|- ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) -> ( y e. ( F limCC C ) <-> ( y e. CC /\ A. u e. ( TopOpen ` CCfld ) ( y e. u -> E. v e. ( TopOpen ` CCfld ) ( C e. v /\ ( F " ( v i^i ( U_ x e. A B \ { C } ) ) ) C_ u ) ) ) ) ) |
152 |
13 146 151
|
mpbir2and |
|- ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) -> y e. ( F limCC C ) ) |
153 |
152
|
ex |
|- ( ph -> ( ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) -> y e. ( F limCC C ) ) ) |
154 |
12 153
|
syl5bi |
|- ( ph -> ( y e. ( CC i^i |^|_ x e. A ( ( F |` B ) limCC C ) ) -> y e. ( F limCC C ) ) ) |
155 |
154
|
ssrdv |
|- ( ph -> ( CC i^i |^|_ x e. A ( ( F |` B ) limCC C ) ) C_ ( F limCC C ) ) |
156 |
11 155
|
eqssd |
|- ( ph -> ( F limCC C ) = ( CC i^i |^|_ x e. A ( ( F |` B ) limCC C ) ) ) |