| Step | Hyp | Ref | Expression | 
						
							| 1 |  | limciun.1 |  |-  ( ph -> A e. Fin ) | 
						
							| 2 |  | limciun.2 |  |-  ( ph -> A. x e. A B C_ CC ) | 
						
							| 3 |  | limciun.3 |  |-  ( ph -> F : U_ x e. A B --> CC ) | 
						
							| 4 |  | limciun.4 |  |-  ( ph -> C e. CC ) | 
						
							| 5 |  | limccl |  |-  ( F limCC C ) C_ CC | 
						
							| 6 |  | limcresi |  |-  ( F limCC C ) C_ ( ( F |` B ) limCC C ) | 
						
							| 7 | 6 | rgenw |  |-  A. x e. A ( F limCC C ) C_ ( ( F |` B ) limCC C ) | 
						
							| 8 |  | ssiin |  |-  ( ( F limCC C ) C_ |^|_ x e. A ( ( F |` B ) limCC C ) <-> A. x e. A ( F limCC C ) C_ ( ( F |` B ) limCC C ) ) | 
						
							| 9 | 7 8 | mpbir |  |-  ( F limCC C ) C_ |^|_ x e. A ( ( F |` B ) limCC C ) | 
						
							| 10 | 5 9 | ssini |  |-  ( F limCC C ) C_ ( CC i^i |^|_ x e. A ( ( F |` B ) limCC C ) ) | 
						
							| 11 | 10 | a1i |  |-  ( ph -> ( F limCC C ) C_ ( CC i^i |^|_ x e. A ( ( F |` B ) limCC C ) ) ) | 
						
							| 12 |  | elriin |  |-  ( y e. ( CC i^i |^|_ x e. A ( ( F |` B ) limCC C ) ) <-> ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) | 
						
							| 13 |  | simprl |  |-  ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) -> y e. CC ) | 
						
							| 14 | 1 | ad2antrr |  |-  ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) -> A e. Fin ) | 
						
							| 15 |  | simplrr |  |-  ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) -> A. x e. A y e. ( ( F |` B ) limCC C ) ) | 
						
							| 16 |  | nfcv |  |-  F/_ x F | 
						
							| 17 |  | nfcsb1v |  |-  F/_ x [_ a / x ]_ B | 
						
							| 18 | 16 17 | nfres |  |-  F/_ x ( F |` [_ a / x ]_ B ) | 
						
							| 19 |  | nfcv |  |-  F/_ x limCC | 
						
							| 20 |  | nfcv |  |-  F/_ x C | 
						
							| 21 | 18 19 20 | nfov |  |-  F/_ x ( ( F |` [_ a / x ]_ B ) limCC C ) | 
						
							| 22 | 21 | nfcri |  |-  F/ x y e. ( ( F |` [_ a / x ]_ B ) limCC C ) | 
						
							| 23 |  | csbeq1a |  |-  ( x = a -> B = [_ a / x ]_ B ) | 
						
							| 24 | 23 | reseq2d |  |-  ( x = a -> ( F |` B ) = ( F |` [_ a / x ]_ B ) ) | 
						
							| 25 | 24 | oveq1d |  |-  ( x = a -> ( ( F |` B ) limCC C ) = ( ( F |` [_ a / x ]_ B ) limCC C ) ) | 
						
							| 26 | 25 | eleq2d |  |-  ( x = a -> ( y e. ( ( F |` B ) limCC C ) <-> y e. ( ( F |` [_ a / x ]_ B ) limCC C ) ) ) | 
						
							| 27 | 22 26 | rspc |  |-  ( a e. A -> ( A. x e. A y e. ( ( F |` B ) limCC C ) -> y e. ( ( F |` [_ a / x ]_ B ) limCC C ) ) ) | 
						
							| 28 | 15 27 | mpan9 |  |-  ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ a e. A ) -> y e. ( ( F |` [_ a / x ]_ B ) limCC C ) ) | 
						
							| 29 | 3 | ad2antrr |  |-  ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ a e. A ) -> F : U_ x e. A B --> CC ) | 
						
							| 30 |  | ssiun2 |  |-  ( a e. A -> [_ a / x ]_ B C_ U_ a e. A [_ a / x ]_ B ) | 
						
							| 31 |  | nfcv |  |-  F/_ a B | 
						
							| 32 | 31 17 23 | cbviun |  |-  U_ x e. A B = U_ a e. A [_ a / x ]_ B | 
						
							| 33 | 30 32 | sseqtrrdi |  |-  ( a e. A -> [_ a / x ]_ B C_ U_ x e. A B ) | 
						
							| 34 | 33 | adantl |  |-  ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ a e. A ) -> [_ a / x ]_ B C_ U_ x e. A B ) | 
						
							| 35 | 29 34 | fssresd |  |-  ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ a e. A ) -> ( F |` [_ a / x ]_ B ) : [_ a / x ]_ B --> CC ) | 
						
							| 36 |  | simpr |  |-  ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ a e. A ) -> a e. A ) | 
						
							| 37 | 2 | ad2antrr |  |-  ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ a e. A ) -> A. x e. A B C_ CC ) | 
						
							| 38 |  | nfcv |  |-  F/_ x CC | 
						
							| 39 | 17 38 | nfss |  |-  F/ x [_ a / x ]_ B C_ CC | 
						
							| 40 | 23 | sseq1d |  |-  ( x = a -> ( B C_ CC <-> [_ a / x ]_ B C_ CC ) ) | 
						
							| 41 | 39 40 | rspc |  |-  ( a e. A -> ( A. x e. A B C_ CC -> [_ a / x ]_ B C_ CC ) ) | 
						
							| 42 | 36 37 41 | sylc |  |-  ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ a e. A ) -> [_ a / x ]_ B C_ CC ) | 
						
							| 43 | 4 | ad2antrr |  |-  ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ a e. A ) -> C e. CC ) | 
						
							| 44 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 45 | 35 42 43 44 | ellimc2 |  |-  ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ a e. A ) -> ( y e. ( ( F |` [_ a / x ]_ B ) limCC C ) <-> ( y e. CC /\ A. u e. ( TopOpen ` CCfld ) ( y e. u -> E. k e. ( TopOpen ` CCfld ) ( C e. k /\ ( ( F |` [_ a / x ]_ B ) " ( k i^i ( [_ a / x ]_ B \ { C } ) ) ) C_ u ) ) ) ) ) | 
						
							| 46 | 45 | adantlr |  |-  ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ a e. A ) -> ( y e. ( ( F |` [_ a / x ]_ B ) limCC C ) <-> ( y e. CC /\ A. u e. ( TopOpen ` CCfld ) ( y e. u -> E. k e. ( TopOpen ` CCfld ) ( C e. k /\ ( ( F |` [_ a / x ]_ B ) " ( k i^i ( [_ a / x ]_ B \ { C } ) ) ) C_ u ) ) ) ) ) | 
						
							| 47 | 28 46 | mpbid |  |-  ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ a e. A ) -> ( y e. CC /\ A. u e. ( TopOpen ` CCfld ) ( y e. u -> E. k e. ( TopOpen ` CCfld ) ( C e. k /\ ( ( F |` [_ a / x ]_ B ) " ( k i^i ( [_ a / x ]_ B \ { C } ) ) ) C_ u ) ) ) ) | 
						
							| 48 | 47 | simprd |  |-  ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ a e. A ) -> A. u e. ( TopOpen ` CCfld ) ( y e. u -> E. k e. ( TopOpen ` CCfld ) ( C e. k /\ ( ( F |` [_ a / x ]_ B ) " ( k i^i ( [_ a / x ]_ B \ { C } ) ) ) C_ u ) ) ) | 
						
							| 49 |  | simplrl |  |-  ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ a e. A ) -> u e. ( TopOpen ` CCfld ) ) | 
						
							| 50 |  | simplrr |  |-  ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ a e. A ) -> y e. u ) | 
						
							| 51 |  | rsp |  |-  ( A. u e. ( TopOpen ` CCfld ) ( y e. u -> E. k e. ( TopOpen ` CCfld ) ( C e. k /\ ( ( F |` [_ a / x ]_ B ) " ( k i^i ( [_ a / x ]_ B \ { C } ) ) ) C_ u ) ) -> ( u e. ( TopOpen ` CCfld ) -> ( y e. u -> E. k e. ( TopOpen ` CCfld ) ( C e. k /\ ( ( F |` [_ a / x ]_ B ) " ( k i^i ( [_ a / x ]_ B \ { C } ) ) ) C_ u ) ) ) ) | 
						
							| 52 | 48 49 50 51 | syl3c |  |-  ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ a e. A ) -> E. k e. ( TopOpen ` CCfld ) ( C e. k /\ ( ( F |` [_ a / x ]_ B ) " ( k i^i ( [_ a / x ]_ B \ { C } ) ) ) C_ u ) ) | 
						
							| 53 | 52 | ralrimiva |  |-  ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) -> A. a e. A E. k e. ( TopOpen ` CCfld ) ( C e. k /\ ( ( F |` [_ a / x ]_ B ) " ( k i^i ( [_ a / x ]_ B \ { C } ) ) ) C_ u ) ) | 
						
							| 54 |  | nfv |  |-  F/ a E. k e. ( TopOpen ` CCfld ) ( C e. k /\ ( ( F |` B ) " ( k i^i ( B \ { C } ) ) ) C_ u ) | 
						
							| 55 |  | nfcv |  |-  F/_ x ( TopOpen ` CCfld ) | 
						
							| 56 |  | nfv |  |-  F/ x C e. k | 
						
							| 57 |  | nfcv |  |-  F/_ x k | 
						
							| 58 |  | nfcv |  |-  F/_ x { C } | 
						
							| 59 | 17 58 | nfdif |  |-  F/_ x ( [_ a / x ]_ B \ { C } ) | 
						
							| 60 | 57 59 | nfin |  |-  F/_ x ( k i^i ( [_ a / x ]_ B \ { C } ) ) | 
						
							| 61 | 18 60 | nfima |  |-  F/_ x ( ( F |` [_ a / x ]_ B ) " ( k i^i ( [_ a / x ]_ B \ { C } ) ) ) | 
						
							| 62 |  | nfcv |  |-  F/_ x u | 
						
							| 63 | 61 62 | nfss |  |-  F/ x ( ( F |` [_ a / x ]_ B ) " ( k i^i ( [_ a / x ]_ B \ { C } ) ) ) C_ u | 
						
							| 64 | 56 63 | nfan |  |-  F/ x ( C e. k /\ ( ( F |` [_ a / x ]_ B ) " ( k i^i ( [_ a / x ]_ B \ { C } ) ) ) C_ u ) | 
						
							| 65 | 55 64 | nfrexw |  |-  F/ x E. k e. ( TopOpen ` CCfld ) ( C e. k /\ ( ( F |` [_ a / x ]_ B ) " ( k i^i ( [_ a / x ]_ B \ { C } ) ) ) C_ u ) | 
						
							| 66 | 23 | difeq1d |  |-  ( x = a -> ( B \ { C } ) = ( [_ a / x ]_ B \ { C } ) ) | 
						
							| 67 | 66 | ineq2d |  |-  ( x = a -> ( k i^i ( B \ { C } ) ) = ( k i^i ( [_ a / x ]_ B \ { C } ) ) ) | 
						
							| 68 | 24 67 | imaeq12d |  |-  ( x = a -> ( ( F |` B ) " ( k i^i ( B \ { C } ) ) ) = ( ( F |` [_ a / x ]_ B ) " ( k i^i ( [_ a / x ]_ B \ { C } ) ) ) ) | 
						
							| 69 | 68 | sseq1d |  |-  ( x = a -> ( ( ( F |` B ) " ( k i^i ( B \ { C } ) ) ) C_ u <-> ( ( F |` [_ a / x ]_ B ) " ( k i^i ( [_ a / x ]_ B \ { C } ) ) ) C_ u ) ) | 
						
							| 70 | 69 | anbi2d |  |-  ( x = a -> ( ( C e. k /\ ( ( F |` B ) " ( k i^i ( B \ { C } ) ) ) C_ u ) <-> ( C e. k /\ ( ( F |` [_ a / x ]_ B ) " ( k i^i ( [_ a / x ]_ B \ { C } ) ) ) C_ u ) ) ) | 
						
							| 71 | 70 | rexbidv |  |-  ( x = a -> ( E. k e. ( TopOpen ` CCfld ) ( C e. k /\ ( ( F |` B ) " ( k i^i ( B \ { C } ) ) ) C_ u ) <-> E. k e. ( TopOpen ` CCfld ) ( C e. k /\ ( ( F |` [_ a / x ]_ B ) " ( k i^i ( [_ a / x ]_ B \ { C } ) ) ) C_ u ) ) ) | 
						
							| 72 | 54 65 71 | cbvralw |  |-  ( A. x e. A E. k e. ( TopOpen ` CCfld ) ( C e. k /\ ( ( F |` B ) " ( k i^i ( B \ { C } ) ) ) C_ u ) <-> A. a e. A E. k e. ( TopOpen ` CCfld ) ( C e. k /\ ( ( F |` [_ a / x ]_ B ) " ( k i^i ( [_ a / x ]_ B \ { C } ) ) ) C_ u ) ) | 
						
							| 73 | 53 72 | sylibr |  |-  ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) -> A. x e. A E. k e. ( TopOpen ` CCfld ) ( C e. k /\ ( ( F |` B ) " ( k i^i ( B \ { C } ) ) ) C_ u ) ) | 
						
							| 74 |  | eleq2 |  |-  ( k = ( g ` x ) -> ( C e. k <-> C e. ( g ` x ) ) ) | 
						
							| 75 |  | ineq1 |  |-  ( k = ( g ` x ) -> ( k i^i ( B \ { C } ) ) = ( ( g ` x ) i^i ( B \ { C } ) ) ) | 
						
							| 76 | 75 | imaeq2d |  |-  ( k = ( g ` x ) -> ( ( F |` B ) " ( k i^i ( B \ { C } ) ) ) = ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) ) | 
						
							| 77 | 76 | sseq1d |  |-  ( k = ( g ` x ) -> ( ( ( F |` B ) " ( k i^i ( B \ { C } ) ) ) C_ u <-> ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) | 
						
							| 78 | 74 77 | anbi12d |  |-  ( k = ( g ` x ) -> ( ( C e. k /\ ( ( F |` B ) " ( k i^i ( B \ { C } ) ) ) C_ u ) <-> ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) ) | 
						
							| 79 | 78 | ac6sfi |  |-  ( ( A e. Fin /\ A. x e. A E. k e. ( TopOpen ` CCfld ) ( C e. k /\ ( ( F |` B ) " ( k i^i ( B \ { C } ) ) ) C_ u ) ) -> E. g ( g : A --> ( TopOpen ` CCfld ) /\ A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) ) | 
						
							| 80 | 14 73 79 | syl2anc |  |-  ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) -> E. g ( g : A --> ( TopOpen ` CCfld ) /\ A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) ) | 
						
							| 81 | 44 | cnfldtop |  |-  ( TopOpen ` CCfld ) e. Top | 
						
							| 82 |  | frn |  |-  ( g : A --> ( TopOpen ` CCfld ) -> ran g C_ ( TopOpen ` CCfld ) ) | 
						
							| 83 | 82 | ad2antrl |  |-  ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ ( g : A --> ( TopOpen ` CCfld ) /\ A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) ) -> ran g C_ ( TopOpen ` CCfld ) ) | 
						
							| 84 | 14 | adantr |  |-  ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ ( g : A --> ( TopOpen ` CCfld ) /\ A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) ) -> A e. Fin ) | 
						
							| 85 |  | ffn |  |-  ( g : A --> ( TopOpen ` CCfld ) -> g Fn A ) | 
						
							| 86 | 85 | ad2antrl |  |-  ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ ( g : A --> ( TopOpen ` CCfld ) /\ A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) ) -> g Fn A ) | 
						
							| 87 |  | dffn4 |  |-  ( g Fn A <-> g : A -onto-> ran g ) | 
						
							| 88 | 86 87 | sylib |  |-  ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ ( g : A --> ( TopOpen ` CCfld ) /\ A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) ) -> g : A -onto-> ran g ) | 
						
							| 89 |  | fofi |  |-  ( ( A e. Fin /\ g : A -onto-> ran g ) -> ran g e. Fin ) | 
						
							| 90 | 84 88 89 | syl2anc |  |-  ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ ( g : A --> ( TopOpen ` CCfld ) /\ A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) ) -> ran g e. Fin ) | 
						
							| 91 |  | unicntop |  |-  CC = U. ( TopOpen ` CCfld ) | 
						
							| 92 | 91 | rintopn |  |-  ( ( ( TopOpen ` CCfld ) e. Top /\ ran g C_ ( TopOpen ` CCfld ) /\ ran g e. Fin ) -> ( CC i^i |^| ran g ) e. ( TopOpen ` CCfld ) ) | 
						
							| 93 | 81 83 90 92 | mp3an2i |  |-  ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ ( g : A --> ( TopOpen ` CCfld ) /\ A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) ) -> ( CC i^i |^| ran g ) e. ( TopOpen ` CCfld ) ) | 
						
							| 94 | 4 | adantr |  |-  ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) -> C e. CC ) | 
						
							| 95 | 94 | ad2antrr |  |-  ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ ( g : A --> ( TopOpen ` CCfld ) /\ A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) ) -> C e. CC ) | 
						
							| 96 |  | simpl |  |-  ( ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) -> C e. ( g ` x ) ) | 
						
							| 97 | 96 | ralimi |  |-  ( A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) -> A. x e. A C e. ( g ` x ) ) | 
						
							| 98 | 97 | ad2antll |  |-  ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ ( g : A --> ( TopOpen ` CCfld ) /\ A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) ) -> A. x e. A C e. ( g ` x ) ) | 
						
							| 99 |  | eleq2 |  |-  ( z = ( g ` x ) -> ( C e. z <-> C e. ( g ` x ) ) ) | 
						
							| 100 | 99 | ralrn |  |-  ( g Fn A -> ( A. z e. ran g C e. z <-> A. x e. A C e. ( g ` x ) ) ) | 
						
							| 101 | 86 100 | syl |  |-  ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ ( g : A --> ( TopOpen ` CCfld ) /\ A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) ) -> ( A. z e. ran g C e. z <-> A. x e. A C e. ( g ` x ) ) ) | 
						
							| 102 | 98 101 | mpbird |  |-  ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ ( g : A --> ( TopOpen ` CCfld ) /\ A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) ) -> A. z e. ran g C e. z ) | 
						
							| 103 |  | elrint |  |-  ( C e. ( CC i^i |^| ran g ) <-> ( C e. CC /\ A. z e. ran g C e. z ) ) | 
						
							| 104 | 95 102 103 | sylanbrc |  |-  ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ ( g : A --> ( TopOpen ` CCfld ) /\ A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) ) -> C e. ( CC i^i |^| ran g ) ) | 
						
							| 105 |  | indifcom |  |-  ( ( CC i^i |^| ran g ) i^i ( U_ x e. A B \ { C } ) ) = ( U_ x e. A B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) | 
						
							| 106 |  | iunin1 |  |-  U_ x e. A ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) = ( U_ x e. A B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) | 
						
							| 107 | 105 106 | eqtr4i |  |-  ( ( CC i^i |^| ran g ) i^i ( U_ x e. A B \ { C } ) ) = U_ x e. A ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) | 
						
							| 108 | 107 | imaeq2i |  |-  ( F " ( ( CC i^i |^| ran g ) i^i ( U_ x e. A B \ { C } ) ) ) = ( F " U_ x e. A ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) ) | 
						
							| 109 |  | imaiun |  |-  ( F " U_ x e. A ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) ) = U_ x e. A ( F " ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) ) | 
						
							| 110 | 108 109 | eqtri |  |-  ( F " ( ( CC i^i |^| ran g ) i^i ( U_ x e. A B \ { C } ) ) ) = U_ x e. A ( F " ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) ) | 
						
							| 111 |  | inss2 |  |-  ( CC i^i |^| ran g ) C_ |^| ran g | 
						
							| 112 |  | fnfvelrn |  |-  ( ( g Fn A /\ x e. A ) -> ( g ` x ) e. ran g ) | 
						
							| 113 | 85 112 | sylan |  |-  ( ( g : A --> ( TopOpen ` CCfld ) /\ x e. A ) -> ( g ` x ) e. ran g ) | 
						
							| 114 |  | intss1 |  |-  ( ( g ` x ) e. ran g -> |^| ran g C_ ( g ` x ) ) | 
						
							| 115 | 113 114 | syl |  |-  ( ( g : A --> ( TopOpen ` CCfld ) /\ x e. A ) -> |^| ran g C_ ( g ` x ) ) | 
						
							| 116 | 111 115 | sstrid |  |-  ( ( g : A --> ( TopOpen ` CCfld ) /\ x e. A ) -> ( CC i^i |^| ran g ) C_ ( g ` x ) ) | 
						
							| 117 | 116 | ssdifd |  |-  ( ( g : A --> ( TopOpen ` CCfld ) /\ x e. A ) -> ( ( CC i^i |^| ran g ) \ { C } ) C_ ( ( g ` x ) \ { C } ) ) | 
						
							| 118 |  | sslin |  |-  ( ( ( CC i^i |^| ran g ) \ { C } ) C_ ( ( g ` x ) \ { C } ) -> ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) C_ ( B i^i ( ( g ` x ) \ { C } ) ) ) | 
						
							| 119 |  | imass2 |  |-  ( ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) C_ ( B i^i ( ( g ` x ) \ { C } ) ) -> ( F " ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) ) C_ ( F " ( B i^i ( ( g ` x ) \ { C } ) ) ) ) | 
						
							| 120 | 117 118 119 | 3syl |  |-  ( ( g : A --> ( TopOpen ` CCfld ) /\ x e. A ) -> ( F " ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) ) C_ ( F " ( B i^i ( ( g ` x ) \ { C } ) ) ) ) | 
						
							| 121 |  | indifcom |  |-  ( ( g ` x ) i^i ( B \ { C } ) ) = ( B i^i ( ( g ` x ) \ { C } ) ) | 
						
							| 122 | 121 | imaeq2i |  |-  ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) = ( ( F |` B ) " ( B i^i ( ( g ` x ) \ { C } ) ) ) | 
						
							| 123 |  | inss1 |  |-  ( B i^i ( ( g ` x ) \ { C } ) ) C_ B | 
						
							| 124 |  | resima2 |  |-  ( ( B i^i ( ( g ` x ) \ { C } ) ) C_ B -> ( ( F |` B ) " ( B i^i ( ( g ` x ) \ { C } ) ) ) = ( F " ( B i^i ( ( g ` x ) \ { C } ) ) ) ) | 
						
							| 125 | 123 124 | ax-mp |  |-  ( ( F |` B ) " ( B i^i ( ( g ` x ) \ { C } ) ) ) = ( F " ( B i^i ( ( g ` x ) \ { C } ) ) ) | 
						
							| 126 | 122 125 | eqtri |  |-  ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) = ( F " ( B i^i ( ( g ` x ) \ { C } ) ) ) | 
						
							| 127 | 120 126 | sseqtrrdi |  |-  ( ( g : A --> ( TopOpen ` CCfld ) /\ x e. A ) -> ( F " ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) ) C_ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) ) | 
						
							| 128 |  | sstr2 |  |-  ( ( F " ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) ) C_ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) -> ( ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u -> ( F " ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) ) C_ u ) ) | 
						
							| 129 | 127 128 | syl |  |-  ( ( g : A --> ( TopOpen ` CCfld ) /\ x e. A ) -> ( ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u -> ( F " ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) ) C_ u ) ) | 
						
							| 130 | 129 | adantld |  |-  ( ( g : A --> ( TopOpen ` CCfld ) /\ x e. A ) -> ( ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) -> ( F " ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) ) C_ u ) ) | 
						
							| 131 | 130 | ralimdva |  |-  ( g : A --> ( TopOpen ` CCfld ) -> ( A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) -> A. x e. A ( F " ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) ) C_ u ) ) | 
						
							| 132 | 131 | imp |  |-  ( ( g : A --> ( TopOpen ` CCfld ) /\ A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) -> A. x e. A ( F " ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) ) C_ u ) | 
						
							| 133 | 132 | adantl |  |-  ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ ( g : A --> ( TopOpen ` CCfld ) /\ A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) ) -> A. x e. A ( F " ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) ) C_ u ) | 
						
							| 134 |  | iunss |  |-  ( U_ x e. A ( F " ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) ) C_ u <-> A. x e. A ( F " ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) ) C_ u ) | 
						
							| 135 | 133 134 | sylibr |  |-  ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ ( g : A --> ( TopOpen ` CCfld ) /\ A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) ) -> U_ x e. A ( F " ( B i^i ( ( CC i^i |^| ran g ) \ { C } ) ) ) C_ u ) | 
						
							| 136 | 110 135 | eqsstrid |  |-  ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ ( g : A --> ( TopOpen ` CCfld ) /\ A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) ) -> ( F " ( ( CC i^i |^| ran g ) i^i ( U_ x e. A B \ { C } ) ) ) C_ u ) | 
						
							| 137 |  | eleq2 |  |-  ( v = ( CC i^i |^| ran g ) -> ( C e. v <-> C e. ( CC i^i |^| ran g ) ) ) | 
						
							| 138 |  | ineq1 |  |-  ( v = ( CC i^i |^| ran g ) -> ( v i^i ( U_ x e. A B \ { C } ) ) = ( ( CC i^i |^| ran g ) i^i ( U_ x e. A B \ { C } ) ) ) | 
						
							| 139 | 138 | imaeq2d |  |-  ( v = ( CC i^i |^| ran g ) -> ( F " ( v i^i ( U_ x e. A B \ { C } ) ) ) = ( F " ( ( CC i^i |^| ran g ) i^i ( U_ x e. A B \ { C } ) ) ) ) | 
						
							| 140 | 139 | sseq1d |  |-  ( v = ( CC i^i |^| ran g ) -> ( ( F " ( v i^i ( U_ x e. A B \ { C } ) ) ) C_ u <-> ( F " ( ( CC i^i |^| ran g ) i^i ( U_ x e. A B \ { C } ) ) ) C_ u ) ) | 
						
							| 141 | 137 140 | anbi12d |  |-  ( v = ( CC i^i |^| ran g ) -> ( ( C e. v /\ ( F " ( v i^i ( U_ x e. A B \ { C } ) ) ) C_ u ) <-> ( C e. ( CC i^i |^| ran g ) /\ ( F " ( ( CC i^i |^| ran g ) i^i ( U_ x e. A B \ { C } ) ) ) C_ u ) ) ) | 
						
							| 142 | 141 | rspcev |  |-  ( ( ( CC i^i |^| ran g ) e. ( TopOpen ` CCfld ) /\ ( C e. ( CC i^i |^| ran g ) /\ ( F " ( ( CC i^i |^| ran g ) i^i ( U_ x e. A B \ { C } ) ) ) C_ u ) ) -> E. v e. ( TopOpen ` CCfld ) ( C e. v /\ ( F " ( v i^i ( U_ x e. A B \ { C } ) ) ) C_ u ) ) | 
						
							| 143 | 93 104 136 142 | syl12anc |  |-  ( ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) /\ ( g : A --> ( TopOpen ` CCfld ) /\ A. x e. A ( C e. ( g ` x ) /\ ( ( F |` B ) " ( ( g ` x ) i^i ( B \ { C } ) ) ) C_ u ) ) ) -> E. v e. ( TopOpen ` CCfld ) ( C e. v /\ ( F " ( v i^i ( U_ x e. A B \ { C } ) ) ) C_ u ) ) | 
						
							| 144 | 80 143 | exlimddv |  |-  ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ ( u e. ( TopOpen ` CCfld ) /\ y e. u ) ) -> E. v e. ( TopOpen ` CCfld ) ( C e. v /\ ( F " ( v i^i ( U_ x e. A B \ { C } ) ) ) C_ u ) ) | 
						
							| 145 | 144 | expr |  |-  ( ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) /\ u e. ( TopOpen ` CCfld ) ) -> ( y e. u -> E. v e. ( TopOpen ` CCfld ) ( C e. v /\ ( F " ( v i^i ( U_ x e. A B \ { C } ) ) ) C_ u ) ) ) | 
						
							| 146 | 145 | ralrimiva |  |-  ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) -> A. u e. ( TopOpen ` CCfld ) ( y e. u -> E. v e. ( TopOpen ` CCfld ) ( C e. v /\ ( F " ( v i^i ( U_ x e. A B \ { C } ) ) ) C_ u ) ) ) | 
						
							| 147 | 3 | adantr |  |-  ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) -> F : U_ x e. A B --> CC ) | 
						
							| 148 |  | iunss |  |-  ( U_ x e. A B C_ CC <-> A. x e. A B C_ CC ) | 
						
							| 149 | 2 148 | sylibr |  |-  ( ph -> U_ x e. A B C_ CC ) | 
						
							| 150 | 149 | adantr |  |-  ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) -> U_ x e. A B C_ CC ) | 
						
							| 151 | 147 150 94 44 | ellimc2 |  |-  ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) -> ( y e. ( F limCC C ) <-> ( y e. CC /\ A. u e. ( TopOpen ` CCfld ) ( y e. u -> E. v e. ( TopOpen ` CCfld ) ( C e. v /\ ( F " ( v i^i ( U_ x e. A B \ { C } ) ) ) C_ u ) ) ) ) ) | 
						
							| 152 | 13 146 151 | mpbir2and |  |-  ( ( ph /\ ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) ) -> y e. ( F limCC C ) ) | 
						
							| 153 | 152 | ex |  |-  ( ph -> ( ( y e. CC /\ A. x e. A y e. ( ( F |` B ) limCC C ) ) -> y e. ( F limCC C ) ) ) | 
						
							| 154 | 12 153 | biimtrid |  |-  ( ph -> ( y e. ( CC i^i |^|_ x e. A ( ( F |` B ) limCC C ) ) -> y e. ( F limCC C ) ) ) | 
						
							| 155 | 154 | ssrdv |  |-  ( ph -> ( CC i^i |^|_ x e. A ( ( F |` B ) limCC C ) ) C_ ( F limCC C ) ) | 
						
							| 156 | 11 155 | eqssd |  |-  ( ph -> ( F limCC C ) = ( CC i^i |^|_ x e. A ( ( F |` B ) limCC C ) ) ) |