Step |
Hyp |
Ref |
Expression |
1 |
|
limclr.k |
|- K = ( TopOpen ` CCfld ) |
2 |
|
limclr.a |
|- ( ph -> A C_ RR ) |
3 |
|
limclr.j |
|- J = ( topGen ` ran (,) ) |
4 |
|
limclr.f |
|- ( ph -> F : A --> CC ) |
5 |
|
limclr.lp1 |
|- ( ph -> B e. ( ( limPt ` J ) ` ( A i^i ( -oo (,) B ) ) ) ) |
6 |
|
limclr.lp2 |
|- ( ph -> B e. ( ( limPt ` J ) ` ( A i^i ( B (,) +oo ) ) ) ) |
7 |
|
limclr.l |
|- ( ph -> L e. ( ( F |` ( -oo (,) B ) ) limCC B ) ) |
8 |
|
limclr.r |
|- ( ph -> R e. ( ( F |` ( B (,) +oo ) ) limCC B ) ) |
9 |
|
neqne |
|- ( -. L = R -> L =/= R ) |
10 |
2
|
adantr |
|- ( ( ph /\ L =/= R ) -> A C_ RR ) |
11 |
4
|
adantr |
|- ( ( ph /\ L =/= R ) -> F : A --> CC ) |
12 |
5
|
adantr |
|- ( ( ph /\ L =/= R ) -> B e. ( ( limPt ` J ) ` ( A i^i ( -oo (,) B ) ) ) ) |
13 |
6
|
adantr |
|- ( ( ph /\ L =/= R ) -> B e. ( ( limPt ` J ) ` ( A i^i ( B (,) +oo ) ) ) ) |
14 |
7
|
adantr |
|- ( ( ph /\ L =/= R ) -> L e. ( ( F |` ( -oo (,) B ) ) limCC B ) ) |
15 |
8
|
adantr |
|- ( ( ph /\ L =/= R ) -> R e. ( ( F |` ( B (,) +oo ) ) limCC B ) ) |
16 |
|
simpr |
|- ( ( ph /\ L =/= R ) -> L =/= R ) |
17 |
1 10 3 11 12 13 14 15 16
|
limclner |
|- ( ( ph /\ L =/= R ) -> ( F limCC B ) = (/) ) |
18 |
|
nne |
|- ( -. ( F limCC B ) =/= (/) <-> ( F limCC B ) = (/) ) |
19 |
17 18
|
sylibr |
|- ( ( ph /\ L =/= R ) -> -. ( F limCC B ) =/= (/) ) |
20 |
9 19
|
sylan2 |
|- ( ( ph /\ -. L = R ) -> -. ( F limCC B ) =/= (/) ) |
21 |
20
|
ex |
|- ( ph -> ( -. L = R -> -. ( F limCC B ) =/= (/) ) ) |
22 |
21
|
con4d |
|- ( ph -> ( ( F limCC B ) =/= (/) -> L = R ) ) |
23 |
2
|
adantr |
|- ( ( ph /\ L = R ) -> A C_ RR ) |
24 |
4
|
adantr |
|- ( ( ph /\ L = R ) -> F : A --> CC ) |
25 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
26 |
3 25
|
eqeltri |
|- J e. Top |
27 |
|
inss2 |
|- ( A i^i ( -oo (,) B ) ) C_ ( -oo (,) B ) |
28 |
|
ioossre |
|- ( -oo (,) B ) C_ RR |
29 |
27 28
|
sstri |
|- ( A i^i ( -oo (,) B ) ) C_ RR |
30 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
31 |
3
|
eqcomi |
|- ( topGen ` ran (,) ) = J |
32 |
31
|
unieqi |
|- U. ( topGen ` ran (,) ) = U. J |
33 |
30 32
|
eqtri |
|- RR = U. J |
34 |
33
|
lpss |
|- ( ( J e. Top /\ ( A i^i ( -oo (,) B ) ) C_ RR ) -> ( ( limPt ` J ) ` ( A i^i ( -oo (,) B ) ) ) C_ RR ) |
35 |
26 29 34
|
mp2an |
|- ( ( limPt ` J ) ` ( A i^i ( -oo (,) B ) ) ) C_ RR |
36 |
35 5
|
sselid |
|- ( ph -> B e. RR ) |
37 |
36
|
adantr |
|- ( ( ph /\ L = R ) -> B e. RR ) |
38 |
7
|
adantr |
|- ( ( ph /\ L = R ) -> L e. ( ( F |` ( -oo (,) B ) ) limCC B ) ) |
39 |
8
|
adantr |
|- ( ( ph /\ L = R ) -> R e. ( ( F |` ( B (,) +oo ) ) limCC B ) ) |
40 |
|
simpr |
|- ( ( ph /\ L = R ) -> L = R ) |
41 |
1 23 3 24 37 38 39 40
|
limcleqr |
|- ( ( ph /\ L = R ) -> L e. ( F limCC B ) ) |
42 |
41
|
ne0d |
|- ( ( ph /\ L = R ) -> ( F limCC B ) =/= (/) ) |
43 |
42
|
ex |
|- ( ph -> ( L = R -> ( F limCC B ) =/= (/) ) ) |
44 |
22 43
|
impbid |
|- ( ph -> ( ( F limCC B ) =/= (/) <-> L = R ) ) |
45 |
41
|
ex |
|- ( ph -> ( L = R -> L e. ( F limCC B ) ) ) |
46 |
44 45
|
jca |
|- ( ph -> ( ( ( F limCC B ) =/= (/) <-> L = R ) /\ ( L = R -> L e. ( F limCC B ) ) ) ) |