| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limcflf.f |
|- ( ph -> F : A --> CC ) |
| 2 |
|
limcflf.a |
|- ( ph -> A C_ CC ) |
| 3 |
|
limcflf.b |
|- ( ph -> B e. ( ( limPt ` K ) ` A ) ) |
| 4 |
|
limcflf.k |
|- K = ( TopOpen ` CCfld ) |
| 5 |
4
|
cnfldhaus |
|- K e. Haus |
| 6 |
|
eqid |
|- ( A \ { B } ) = ( A \ { B } ) |
| 7 |
|
eqid |
|- ( ( ( nei ` K ) ` { B } ) |`t ( A \ { B } ) ) = ( ( ( nei ` K ) ` { B } ) |`t ( A \ { B } ) ) |
| 8 |
1 2 3 4 6 7
|
limcflflem |
|- ( ph -> ( ( ( nei ` K ) ` { B } ) |`t ( A \ { B } ) ) e. ( Fil ` ( A \ { B } ) ) ) |
| 9 |
|
difss |
|- ( A \ { B } ) C_ A |
| 10 |
|
fssres |
|- ( ( F : A --> CC /\ ( A \ { B } ) C_ A ) -> ( F |` ( A \ { B } ) ) : ( A \ { B } ) --> CC ) |
| 11 |
1 9 10
|
sylancl |
|- ( ph -> ( F |` ( A \ { B } ) ) : ( A \ { B } ) --> CC ) |
| 12 |
4
|
cnfldtopon |
|- K e. ( TopOn ` CC ) |
| 13 |
12
|
toponunii |
|- CC = U. K |
| 14 |
13
|
hausflf |
|- ( ( K e. Haus /\ ( ( ( nei ` K ) ` { B } ) |`t ( A \ { B } ) ) e. ( Fil ` ( A \ { B } ) ) /\ ( F |` ( A \ { B } ) ) : ( A \ { B } ) --> CC ) -> E* x x e. ( ( K fLimf ( ( ( nei ` K ) ` { B } ) |`t ( A \ { B } ) ) ) ` ( F |` ( A \ { B } ) ) ) ) |
| 15 |
5 8 11 14
|
mp3an2i |
|- ( ph -> E* x x e. ( ( K fLimf ( ( ( nei ` K ) ` { B } ) |`t ( A \ { B } ) ) ) ` ( F |` ( A \ { B } ) ) ) ) |
| 16 |
1 2 3 4 6 7
|
limcflf |
|- ( ph -> ( F limCC B ) = ( ( K fLimf ( ( ( nei ` K ) ` { B } ) |`t ( A \ { B } ) ) ) ` ( F |` ( A \ { B } ) ) ) ) |
| 17 |
16
|
eleq2d |
|- ( ph -> ( x e. ( F limCC B ) <-> x e. ( ( K fLimf ( ( ( nei ` K ) ` { B } ) |`t ( A \ { B } ) ) ) ` ( F |` ( A \ { B } ) ) ) ) ) |
| 18 |
17
|
mobidv |
|- ( ph -> ( E* x x e. ( F limCC B ) <-> E* x x e. ( ( K fLimf ( ( ( nei ` K ) ` { B } ) |`t ( A \ { B } ) ) ) ` ( F |` ( A \ { B } ) ) ) ) ) |
| 19 |
15 18
|
mpbird |
|- ( ph -> E* x x e. ( F limCC B ) ) |