Metamath Proof Explorer


Theorem limcmptdm

Description: The domain of a maps-to function with a limit. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses limcmptdm.f
|- F = ( x e. A |-> B )
limcmptdm.b
|- ( ( ph /\ x e. A ) -> B e. CC )
limcmptdm.c
|- ( ph -> C e. ( F limCC D ) )
Assertion limcmptdm
|- ( ph -> A C_ CC )

Proof

Step Hyp Ref Expression
1 limcmptdm.f
 |-  F = ( x e. A |-> B )
2 limcmptdm.b
 |-  ( ( ph /\ x e. A ) -> B e. CC )
3 limcmptdm.c
 |-  ( ph -> C e. ( F limCC D ) )
4 1 2 dmmptd
 |-  ( ph -> dom F = A )
5 limcrcl
 |-  ( C e. ( F limCC D ) -> ( F : dom F --> CC /\ dom F C_ CC /\ D e. CC ) )
6 3 5 syl
 |-  ( ph -> ( F : dom F --> CC /\ dom F C_ CC /\ D e. CC ) )
7 6 simp2d
 |-  ( ph -> dom F C_ CC )
8 4 7 eqsstrrd
 |-  ( ph -> A C_ CC )