Description: The domain of a maps-to function with a limit. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | limcmptdm.f | |- F = ( x e. A |-> B ) |
|
limcmptdm.b | |- ( ( ph /\ x e. A ) -> B e. CC ) |
||
limcmptdm.c | |- ( ph -> C e. ( F limCC D ) ) |
||
Assertion | limcmptdm | |- ( ph -> A C_ CC ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limcmptdm.f | |- F = ( x e. A |-> B ) |
|
2 | limcmptdm.b | |- ( ( ph /\ x e. A ) -> B e. CC ) |
|
3 | limcmptdm.c | |- ( ph -> C e. ( F limCC D ) ) |
|
4 | 1 2 | dmmptd | |- ( ph -> dom F = A ) |
5 | limcrcl | |- ( C e. ( F limCC D ) -> ( F : dom F --> CC /\ dom F C_ CC /\ D e. CC ) ) |
|
6 | 3 5 | syl | |- ( ph -> ( F : dom F --> CC /\ dom F C_ CC /\ D e. CC ) ) |
7 | 6 | simp2d | |- ( ph -> dom F C_ CC ) |
8 | 4 7 | eqsstrrd | |- ( ph -> A C_ CC ) |