| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limcrcl |
|- ( x e. ( F limCC B ) -> ( F : dom F --> CC /\ dom F C_ CC /\ B e. CC ) ) |
| 2 |
1
|
simp1d |
|- ( x e. ( F limCC B ) -> F : dom F --> CC ) |
| 3 |
1
|
simp2d |
|- ( x e. ( F limCC B ) -> dom F C_ CC ) |
| 4 |
1
|
simp3d |
|- ( x e. ( F limCC B ) -> B e. CC ) |
| 5 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
| 6 |
2 3 4 5
|
ellimc2 |
|- ( x e. ( F limCC B ) -> ( x e. ( F limCC B ) <-> ( x e. CC /\ A. u e. ( TopOpen ` CCfld ) ( x e. u -> E. v e. ( TopOpen ` CCfld ) ( B e. v /\ ( F " ( v i^i ( dom F \ { B } ) ) ) C_ u ) ) ) ) ) |
| 7 |
6
|
ibi |
|- ( x e. ( F limCC B ) -> ( x e. CC /\ A. u e. ( TopOpen ` CCfld ) ( x e. u -> E. v e. ( TopOpen ` CCfld ) ( B e. v /\ ( F " ( v i^i ( dom F \ { B } ) ) ) C_ u ) ) ) ) |
| 8 |
|
inss2 |
|- ( v i^i ( ( dom F i^i C ) \ { B } ) ) C_ ( ( dom F i^i C ) \ { B } ) |
| 9 |
|
difss |
|- ( ( dom F i^i C ) \ { B } ) C_ ( dom F i^i C ) |
| 10 |
|
inss2 |
|- ( dom F i^i C ) C_ C |
| 11 |
9 10
|
sstri |
|- ( ( dom F i^i C ) \ { B } ) C_ C |
| 12 |
8 11
|
sstri |
|- ( v i^i ( ( dom F i^i C ) \ { B } ) ) C_ C |
| 13 |
|
resima2 |
|- ( ( v i^i ( ( dom F i^i C ) \ { B } ) ) C_ C -> ( ( F |` C ) " ( v i^i ( ( dom F i^i C ) \ { B } ) ) ) = ( F " ( v i^i ( ( dom F i^i C ) \ { B } ) ) ) ) |
| 14 |
12 13
|
ax-mp |
|- ( ( F |` C ) " ( v i^i ( ( dom F i^i C ) \ { B } ) ) ) = ( F " ( v i^i ( ( dom F i^i C ) \ { B } ) ) ) |
| 15 |
|
inss1 |
|- ( dom F i^i C ) C_ dom F |
| 16 |
|
ssdif |
|- ( ( dom F i^i C ) C_ dom F -> ( ( dom F i^i C ) \ { B } ) C_ ( dom F \ { B } ) ) |
| 17 |
15 16
|
ax-mp |
|- ( ( dom F i^i C ) \ { B } ) C_ ( dom F \ { B } ) |
| 18 |
|
sslin |
|- ( ( ( dom F i^i C ) \ { B } ) C_ ( dom F \ { B } ) -> ( v i^i ( ( dom F i^i C ) \ { B } ) ) C_ ( v i^i ( dom F \ { B } ) ) ) |
| 19 |
|
imass2 |
|- ( ( v i^i ( ( dom F i^i C ) \ { B } ) ) C_ ( v i^i ( dom F \ { B } ) ) -> ( F " ( v i^i ( ( dom F i^i C ) \ { B } ) ) ) C_ ( F " ( v i^i ( dom F \ { B } ) ) ) ) |
| 20 |
17 18 19
|
mp2b |
|- ( F " ( v i^i ( ( dom F i^i C ) \ { B } ) ) ) C_ ( F " ( v i^i ( dom F \ { B } ) ) ) |
| 21 |
14 20
|
eqsstri |
|- ( ( F |` C ) " ( v i^i ( ( dom F i^i C ) \ { B } ) ) ) C_ ( F " ( v i^i ( dom F \ { B } ) ) ) |
| 22 |
|
sstr |
|- ( ( ( ( F |` C ) " ( v i^i ( ( dom F i^i C ) \ { B } ) ) ) C_ ( F " ( v i^i ( dom F \ { B } ) ) ) /\ ( F " ( v i^i ( dom F \ { B } ) ) ) C_ u ) -> ( ( F |` C ) " ( v i^i ( ( dom F i^i C ) \ { B } ) ) ) C_ u ) |
| 23 |
21 22
|
mpan |
|- ( ( F " ( v i^i ( dom F \ { B } ) ) ) C_ u -> ( ( F |` C ) " ( v i^i ( ( dom F i^i C ) \ { B } ) ) ) C_ u ) |
| 24 |
23
|
anim2i |
|- ( ( B e. v /\ ( F " ( v i^i ( dom F \ { B } ) ) ) C_ u ) -> ( B e. v /\ ( ( F |` C ) " ( v i^i ( ( dom F i^i C ) \ { B } ) ) ) C_ u ) ) |
| 25 |
24
|
reximi |
|- ( E. v e. ( TopOpen ` CCfld ) ( B e. v /\ ( F " ( v i^i ( dom F \ { B } ) ) ) C_ u ) -> E. v e. ( TopOpen ` CCfld ) ( B e. v /\ ( ( F |` C ) " ( v i^i ( ( dom F i^i C ) \ { B } ) ) ) C_ u ) ) |
| 26 |
25
|
imim2i |
|- ( ( x e. u -> E. v e. ( TopOpen ` CCfld ) ( B e. v /\ ( F " ( v i^i ( dom F \ { B } ) ) ) C_ u ) ) -> ( x e. u -> E. v e. ( TopOpen ` CCfld ) ( B e. v /\ ( ( F |` C ) " ( v i^i ( ( dom F i^i C ) \ { B } ) ) ) C_ u ) ) ) |
| 27 |
26
|
ralimi |
|- ( A. u e. ( TopOpen ` CCfld ) ( x e. u -> E. v e. ( TopOpen ` CCfld ) ( B e. v /\ ( F " ( v i^i ( dom F \ { B } ) ) ) C_ u ) ) -> A. u e. ( TopOpen ` CCfld ) ( x e. u -> E. v e. ( TopOpen ` CCfld ) ( B e. v /\ ( ( F |` C ) " ( v i^i ( ( dom F i^i C ) \ { B } ) ) ) C_ u ) ) ) |
| 28 |
27
|
anim2i |
|- ( ( x e. CC /\ A. u e. ( TopOpen ` CCfld ) ( x e. u -> E. v e. ( TopOpen ` CCfld ) ( B e. v /\ ( F " ( v i^i ( dom F \ { B } ) ) ) C_ u ) ) ) -> ( x e. CC /\ A. u e. ( TopOpen ` CCfld ) ( x e. u -> E. v e. ( TopOpen ` CCfld ) ( B e. v /\ ( ( F |` C ) " ( v i^i ( ( dom F i^i C ) \ { B } ) ) ) C_ u ) ) ) ) |
| 29 |
7 28
|
syl |
|- ( x e. ( F limCC B ) -> ( x e. CC /\ A. u e. ( TopOpen ` CCfld ) ( x e. u -> E. v e. ( TopOpen ` CCfld ) ( B e. v /\ ( ( F |` C ) " ( v i^i ( ( dom F i^i C ) \ { B } ) ) ) C_ u ) ) ) ) |
| 30 |
|
fresin |
|- ( F : dom F --> CC -> ( F |` C ) : ( dom F i^i C ) --> CC ) |
| 31 |
2 30
|
syl |
|- ( x e. ( F limCC B ) -> ( F |` C ) : ( dom F i^i C ) --> CC ) |
| 32 |
15 3
|
sstrid |
|- ( x e. ( F limCC B ) -> ( dom F i^i C ) C_ CC ) |
| 33 |
31 32 4 5
|
ellimc2 |
|- ( x e. ( F limCC B ) -> ( x e. ( ( F |` C ) limCC B ) <-> ( x e. CC /\ A. u e. ( TopOpen ` CCfld ) ( x e. u -> E. v e. ( TopOpen ` CCfld ) ( B e. v /\ ( ( F |` C ) " ( v i^i ( ( dom F i^i C ) \ { B } ) ) ) C_ u ) ) ) ) ) |
| 34 |
29 33
|
mpbird |
|- ( x e. ( F limCC B ) -> x e. ( ( F |` C ) limCC B ) ) |
| 35 |
34
|
ssriv |
|- ( F limCC B ) C_ ( ( F |` C ) limCC B ) |