Description: A limit ordinal class that is also a set is an ordinal number. (Contributed by NM, 26-Apr-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | limelon | |- ( ( A e. B /\ Lim A ) -> A e. On ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limord | |- ( Lim A -> Ord A ) |
|
2 | elong | |- ( A e. B -> ( A e. On <-> Ord A ) ) |
|
3 | 1 2 | syl5ibr | |- ( A e. B -> ( Lim A -> A e. On ) ) |
4 | 3 | imp | |- ( ( A e. B /\ Lim A ) -> A e. On ) |