Description: A limit ordinal class that is also a set is an ordinal number. (Contributed by NM, 26-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | limelon | |- ( ( A e. B /\ Lim A ) -> A e. On ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limord | |- ( Lim A -> Ord A ) |
|
| 2 | elong | |- ( A e. B -> ( A e. On <-> Ord A ) ) |
|
| 3 | 1 2 | imbitrrid | |- ( A e. B -> ( Lim A -> A e. On ) ) |
| 4 | 3 | imp | |- ( ( A e. B /\ Lim A ) -> A e. On ) |