Metamath Proof Explorer


Theorem limenpsi

Description: A limit ordinal is equinumerous to a proper subset of itself. (Contributed by NM, 30-Oct-2003) (Revised by Mario Carneiro, 16-Nov-2014)

Ref Expression
Hypothesis limenpsi.1
|- Lim A
Assertion limenpsi
|- ( A e. V -> A ~~ ( A \ { (/) } ) )

Proof

Step Hyp Ref Expression
1 limenpsi.1
 |-  Lim A
2 difexg
 |-  ( A e. V -> ( A \ { (/) } ) e. _V )
3 limsuc
 |-  ( Lim A -> ( x e. A <-> suc x e. A ) )
4 1 3 ax-mp
 |-  ( x e. A <-> suc x e. A )
5 4 biimpi
 |-  ( x e. A -> suc x e. A )
6 nsuceq0
 |-  suc x =/= (/)
7 eldifsn
 |-  ( suc x e. ( A \ { (/) } ) <-> ( suc x e. A /\ suc x =/= (/) ) )
8 5 6 7 sylanblrc
 |-  ( x e. A -> suc x e. ( A \ { (/) } ) )
9 limord
 |-  ( Lim A -> Ord A )
10 1 9 ax-mp
 |-  Ord A
11 ordelon
 |-  ( ( Ord A /\ x e. A ) -> x e. On )
12 10 11 mpan
 |-  ( x e. A -> x e. On )
13 ordelon
 |-  ( ( Ord A /\ y e. A ) -> y e. On )
14 10 13 mpan
 |-  ( y e. A -> y e. On )
15 suc11
 |-  ( ( x e. On /\ y e. On ) -> ( suc x = suc y <-> x = y ) )
16 12 14 15 syl2an
 |-  ( ( x e. A /\ y e. A ) -> ( suc x = suc y <-> x = y ) )
17 8 16 dom3
 |-  ( ( A e. V /\ ( A \ { (/) } ) e. _V ) -> A ~<_ ( A \ { (/) } ) )
18 2 17 mpdan
 |-  ( A e. V -> A ~<_ ( A \ { (/) } ) )
19 difss
 |-  ( A \ { (/) } ) C_ A
20 ssdomg
 |-  ( A e. V -> ( ( A \ { (/) } ) C_ A -> ( A \ { (/) } ) ~<_ A ) )
21 19 20 mpi
 |-  ( A e. V -> ( A \ { (/) } ) ~<_ A )
22 sbth
 |-  ( ( A ~<_ ( A \ { (/) } ) /\ ( A \ { (/) } ) ~<_ A ) -> A ~~ ( A \ { (/) } ) )
23 18 21 22 syl2anc
 |-  ( A e. V -> A ~~ ( A \ { (/) } ) )