| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limenpsi.1 |
|- Lim A |
| 2 |
|
difexg |
|- ( A e. V -> ( A \ { (/) } ) e. _V ) |
| 3 |
|
limsuc |
|- ( Lim A -> ( x e. A <-> suc x e. A ) ) |
| 4 |
1 3
|
ax-mp |
|- ( x e. A <-> suc x e. A ) |
| 5 |
4
|
biimpi |
|- ( x e. A -> suc x e. A ) |
| 6 |
|
nsuceq0 |
|- suc x =/= (/) |
| 7 |
|
eldifsn |
|- ( suc x e. ( A \ { (/) } ) <-> ( suc x e. A /\ suc x =/= (/) ) ) |
| 8 |
5 6 7
|
sylanblrc |
|- ( x e. A -> suc x e. ( A \ { (/) } ) ) |
| 9 |
|
limord |
|- ( Lim A -> Ord A ) |
| 10 |
1 9
|
ax-mp |
|- Ord A |
| 11 |
|
ordelon |
|- ( ( Ord A /\ x e. A ) -> x e. On ) |
| 12 |
10 11
|
mpan |
|- ( x e. A -> x e. On ) |
| 13 |
|
ordelon |
|- ( ( Ord A /\ y e. A ) -> y e. On ) |
| 14 |
10 13
|
mpan |
|- ( y e. A -> y e. On ) |
| 15 |
|
suc11 |
|- ( ( x e. On /\ y e. On ) -> ( suc x = suc y <-> x = y ) ) |
| 16 |
12 14 15
|
syl2an |
|- ( ( x e. A /\ y e. A ) -> ( suc x = suc y <-> x = y ) ) |
| 17 |
8 16
|
dom3 |
|- ( ( A e. V /\ ( A \ { (/) } ) e. _V ) -> A ~<_ ( A \ { (/) } ) ) |
| 18 |
2 17
|
mpdan |
|- ( A e. V -> A ~<_ ( A \ { (/) } ) ) |
| 19 |
|
difss |
|- ( A \ { (/) } ) C_ A |
| 20 |
|
ssdomg |
|- ( A e. V -> ( ( A \ { (/) } ) C_ A -> ( A \ { (/) } ) ~<_ A ) ) |
| 21 |
19 20
|
mpi |
|- ( A e. V -> ( A \ { (/) } ) ~<_ A ) |
| 22 |
|
sbth |
|- ( ( A ~<_ ( A \ { (/) } ) /\ ( A \ { (/) } ) ~<_ A ) -> A ~~ ( A \ { (/) } ) ) |
| 23 |
18 21 22
|
syl2anc |
|- ( A e. V -> A ~~ ( A \ { (/) } ) ) |