Step |
Hyp |
Ref |
Expression |
1 |
|
eleq1 |
|- ( A = if ( Lim A , A , On ) -> ( A e. V <-> if ( Lim A , A , On ) e. V ) ) |
2 |
|
id |
|- ( A = if ( Lim A , A , On ) -> A = if ( Lim A , A , On ) ) |
3 |
|
suceq |
|- ( A = if ( Lim A , A , On ) -> suc A = suc if ( Lim A , A , On ) ) |
4 |
2 3
|
breq12d |
|- ( A = if ( Lim A , A , On ) -> ( A ~~ suc A <-> if ( Lim A , A , On ) ~~ suc if ( Lim A , A , On ) ) ) |
5 |
1 4
|
imbi12d |
|- ( A = if ( Lim A , A , On ) -> ( ( A e. V -> A ~~ suc A ) <-> ( if ( Lim A , A , On ) e. V -> if ( Lim A , A , On ) ~~ suc if ( Lim A , A , On ) ) ) ) |
6 |
|
limeq |
|- ( A = if ( Lim A , A , On ) -> ( Lim A <-> Lim if ( Lim A , A , On ) ) ) |
7 |
|
limeq |
|- ( On = if ( Lim A , A , On ) -> ( Lim On <-> Lim if ( Lim A , A , On ) ) ) |
8 |
|
limon |
|- Lim On |
9 |
6 7 8
|
elimhyp |
|- Lim if ( Lim A , A , On ) |
10 |
9
|
limensuci |
|- ( if ( Lim A , A , On ) e. V -> if ( Lim A , A , On ) ~~ suc if ( Lim A , A , On ) ) |
11 |
5 10
|
dedth |
|- ( Lim A -> ( A e. V -> A ~~ suc A ) ) |
12 |
11
|
impcom |
|- ( ( A e. V /\ Lim A ) -> A ~~ suc A ) |