Step |
Hyp |
Ref |
Expression |
1 |
|
limensuci.1 |
|- Lim A |
2 |
1
|
limenpsi |
|- ( A e. V -> A ~~ ( A \ { (/) } ) ) |
3 |
2
|
ensymd |
|- ( A e. V -> ( A \ { (/) } ) ~~ A ) |
4 |
|
0ex |
|- (/) e. _V |
5 |
|
en2sn |
|- ( ( (/) e. _V /\ A e. V ) -> { (/) } ~~ { A } ) |
6 |
4 5
|
mpan |
|- ( A e. V -> { (/) } ~~ { A } ) |
7 |
|
disjdifr |
|- ( ( A \ { (/) } ) i^i { (/) } ) = (/) |
8 |
|
limord |
|- ( Lim A -> Ord A ) |
9 |
1 8
|
ax-mp |
|- Ord A |
10 |
|
ordirr |
|- ( Ord A -> -. A e. A ) |
11 |
9 10
|
ax-mp |
|- -. A e. A |
12 |
|
disjsn |
|- ( ( A i^i { A } ) = (/) <-> -. A e. A ) |
13 |
11 12
|
mpbir |
|- ( A i^i { A } ) = (/) |
14 |
|
unen |
|- ( ( ( ( A \ { (/) } ) ~~ A /\ { (/) } ~~ { A } ) /\ ( ( ( A \ { (/) } ) i^i { (/) } ) = (/) /\ ( A i^i { A } ) = (/) ) ) -> ( ( A \ { (/) } ) u. { (/) } ) ~~ ( A u. { A } ) ) |
15 |
7 13 14
|
mpanr12 |
|- ( ( ( A \ { (/) } ) ~~ A /\ { (/) } ~~ { A } ) -> ( ( A \ { (/) } ) u. { (/) } ) ~~ ( A u. { A } ) ) |
16 |
3 6 15
|
syl2anc |
|- ( A e. V -> ( ( A \ { (/) } ) u. { (/) } ) ~~ ( A u. { A } ) ) |
17 |
|
0ellim |
|- ( Lim A -> (/) e. A ) |
18 |
1 17
|
ax-mp |
|- (/) e. A |
19 |
4
|
snss |
|- ( (/) e. A <-> { (/) } C_ A ) |
20 |
18 19
|
mpbi |
|- { (/) } C_ A |
21 |
|
undif |
|- ( { (/) } C_ A <-> ( { (/) } u. ( A \ { (/) } ) ) = A ) |
22 |
20 21
|
mpbi |
|- ( { (/) } u. ( A \ { (/) } ) ) = A |
23 |
|
uncom |
|- ( { (/) } u. ( A \ { (/) } ) ) = ( ( A \ { (/) } ) u. { (/) } ) |
24 |
22 23
|
eqtr3i |
|- A = ( ( A \ { (/) } ) u. { (/) } ) |
25 |
|
df-suc |
|- suc A = ( A u. { A } ) |
26 |
16 24 25
|
3brtr4g |
|- ( A e. V -> A ~~ suc A ) |