Metamath Proof Explorer


Theorem limensuci

Description: A limit ordinal is equinumerous to its successor. (Contributed by NM, 30-Oct-2003)

Ref Expression
Hypothesis limensuci.1
|- Lim A
Assertion limensuci
|- ( A e. V -> A ~~ suc A )

Proof

Step Hyp Ref Expression
1 limensuci.1
 |-  Lim A
2 1 limenpsi
 |-  ( A e. V -> A ~~ ( A \ { (/) } ) )
3 2 ensymd
 |-  ( A e. V -> ( A \ { (/) } ) ~~ A )
4 0ex
 |-  (/) e. _V
5 en2sn
 |-  ( ( (/) e. _V /\ A e. V ) -> { (/) } ~~ { A } )
6 4 5 mpan
 |-  ( A e. V -> { (/) } ~~ { A } )
7 incom
 |-  ( ( A \ { (/) } ) i^i { (/) } ) = ( { (/) } i^i ( A \ { (/) } ) )
8 disjdif
 |-  ( { (/) } i^i ( A \ { (/) } ) ) = (/)
9 7 8 eqtri
 |-  ( ( A \ { (/) } ) i^i { (/) } ) = (/)
10 limord
 |-  ( Lim A -> Ord A )
11 1 10 ax-mp
 |-  Ord A
12 ordirr
 |-  ( Ord A -> -. A e. A )
13 11 12 ax-mp
 |-  -. A e. A
14 disjsn
 |-  ( ( A i^i { A } ) = (/) <-> -. A e. A )
15 13 14 mpbir
 |-  ( A i^i { A } ) = (/)
16 unen
 |-  ( ( ( ( A \ { (/) } ) ~~ A /\ { (/) } ~~ { A } ) /\ ( ( ( A \ { (/) } ) i^i { (/) } ) = (/) /\ ( A i^i { A } ) = (/) ) ) -> ( ( A \ { (/) } ) u. { (/) } ) ~~ ( A u. { A } ) )
17 9 15 16 mpanr12
 |-  ( ( ( A \ { (/) } ) ~~ A /\ { (/) } ~~ { A } ) -> ( ( A \ { (/) } ) u. { (/) } ) ~~ ( A u. { A } ) )
18 3 6 17 syl2anc
 |-  ( A e. V -> ( ( A \ { (/) } ) u. { (/) } ) ~~ ( A u. { A } ) )
19 0ellim
 |-  ( Lim A -> (/) e. A )
20 1 19 ax-mp
 |-  (/) e. A
21 4 snss
 |-  ( (/) e. A <-> { (/) } C_ A )
22 20 21 mpbi
 |-  { (/) } C_ A
23 undif
 |-  ( { (/) } C_ A <-> ( { (/) } u. ( A \ { (/) } ) ) = A )
24 22 23 mpbi
 |-  ( { (/) } u. ( A \ { (/) } ) ) = A
25 uncom
 |-  ( { (/) } u. ( A \ { (/) } ) ) = ( ( A \ { (/) } ) u. { (/) } )
26 24 25 eqtr3i
 |-  A = ( ( A \ { (/) } ) u. { (/) } )
27 df-suc
 |-  suc A = ( A u. { A } )
28 18 26 27 3brtr4g
 |-  ( A e. V -> A ~~ suc A )