| Step | Hyp | Ref | Expression | 
						
							| 1 |  | limensuci.1 |  |-  Lim A | 
						
							| 2 | 1 | limenpsi |  |-  ( A e. V -> A ~~ ( A \ { (/) } ) ) | 
						
							| 3 | 2 | ensymd |  |-  ( A e. V -> ( A \ { (/) } ) ~~ A ) | 
						
							| 4 |  | 0ex |  |-  (/) e. _V | 
						
							| 5 |  | en2sn |  |-  ( ( (/) e. _V /\ A e. V ) -> { (/) } ~~ { A } ) | 
						
							| 6 | 4 5 | mpan |  |-  ( A e. V -> { (/) } ~~ { A } ) | 
						
							| 7 |  | disjdifr |  |-  ( ( A \ { (/) } ) i^i { (/) } ) = (/) | 
						
							| 8 |  | limord |  |-  ( Lim A -> Ord A ) | 
						
							| 9 | 1 8 | ax-mp |  |-  Ord A | 
						
							| 10 |  | ordirr |  |-  ( Ord A -> -. A e. A ) | 
						
							| 11 | 9 10 | ax-mp |  |-  -. A e. A | 
						
							| 12 |  | disjsn |  |-  ( ( A i^i { A } ) = (/) <-> -. A e. A ) | 
						
							| 13 | 11 12 | mpbir |  |-  ( A i^i { A } ) = (/) | 
						
							| 14 |  | unen |  |-  ( ( ( ( A \ { (/) } ) ~~ A /\ { (/) } ~~ { A } ) /\ ( ( ( A \ { (/) } ) i^i { (/) } ) = (/) /\ ( A i^i { A } ) = (/) ) ) -> ( ( A \ { (/) } ) u. { (/) } ) ~~ ( A u. { A } ) ) | 
						
							| 15 | 7 13 14 | mpanr12 |  |-  ( ( ( A \ { (/) } ) ~~ A /\ { (/) } ~~ { A } ) -> ( ( A \ { (/) } ) u. { (/) } ) ~~ ( A u. { A } ) ) | 
						
							| 16 | 3 6 15 | syl2anc |  |-  ( A e. V -> ( ( A \ { (/) } ) u. { (/) } ) ~~ ( A u. { A } ) ) | 
						
							| 17 |  | 0ellim |  |-  ( Lim A -> (/) e. A ) | 
						
							| 18 | 1 17 | ax-mp |  |-  (/) e. A | 
						
							| 19 | 4 | snss |  |-  ( (/) e. A <-> { (/) } C_ A ) | 
						
							| 20 | 18 19 | mpbi |  |-  { (/) } C_ A | 
						
							| 21 |  | undif |  |-  ( { (/) } C_ A <-> ( { (/) } u. ( A \ { (/) } ) ) = A ) | 
						
							| 22 | 20 21 | mpbi |  |-  ( { (/) } u. ( A \ { (/) } ) ) = A | 
						
							| 23 |  | uncom |  |-  ( { (/) } u. ( A \ { (/) } ) ) = ( ( A \ { (/) } ) u. { (/) } ) | 
						
							| 24 | 22 23 | eqtr3i |  |-  A = ( ( A \ { (/) } ) u. { (/) } ) | 
						
							| 25 |  | df-suc |  |-  suc A = ( A u. { A } ) | 
						
							| 26 | 16 24 25 | 3brtr4g |  |-  ( A e. V -> A ~~ suc A ) |