| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ordeq |
|- ( A = B -> ( Ord A <-> Ord B ) ) |
| 2 |
|
neeq1 |
|- ( A = B -> ( A =/= (/) <-> B =/= (/) ) ) |
| 3 |
|
id |
|- ( A = B -> A = B ) |
| 4 |
|
unieq |
|- ( A = B -> U. A = U. B ) |
| 5 |
3 4
|
eqeq12d |
|- ( A = B -> ( A = U. A <-> B = U. B ) ) |
| 6 |
1 2 5
|
3anbi123d |
|- ( A = B -> ( ( Ord A /\ A =/= (/) /\ A = U. A ) <-> ( Ord B /\ B =/= (/) /\ B = U. B ) ) ) |
| 7 |
|
df-lim |
|- ( Lim A <-> ( Ord A /\ A =/= (/) /\ A = U. A ) ) |
| 8 |
|
df-lim |
|- ( Lim B <-> ( Ord B /\ B =/= (/) /\ B = U. B ) ) |
| 9 |
6 7 8
|
3bitr4g |
|- ( A = B -> ( Lim A <-> Lim B ) ) |