| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							liminflimsupxrre.1 | 
							 |-  ( ph -> M e. ZZ )  | 
						
						
							| 2 | 
							
								
							 | 
							liminflimsupxrre.2 | 
							 |-  Z = ( ZZ>= ` M )  | 
						
						
							| 3 | 
							
								
							 | 
							liminflimsupxrre.3 | 
							 |-  ( ph -> F : Z --> RR* )  | 
						
						
							| 4 | 
							
								
							 | 
							liminflimsupxrre.4 | 
							 |-  ( ph -> ( limsup ` F ) =/= +oo )  | 
						
						
							| 5 | 
							
								
							 | 
							liminflimsupxrre.5 | 
							 |-  ( ph -> ( liminf ` F ) =/= -oo )  | 
						
						
							| 6 | 
							
								
							 | 
							simpll | 
							 |-  ( ( ( ph /\ k e. Z ) /\ j e. ( ZZ>= ` k ) ) -> ph )  | 
						
						
							| 7 | 
							
								2
							 | 
							uztrn2 | 
							 |-  ( ( k e. Z /\ j e. ( ZZ>= ` k ) ) -> j e. Z )  | 
						
						
							| 8 | 
							
								7
							 | 
							adantll | 
							 |-  ( ( ( ph /\ k e. Z ) /\ j e. ( ZZ>= ` k ) ) -> j e. Z )  | 
						
						
							| 9 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ j e. Z ) -> j e. Z )  | 
						
						
							| 10 | 
							
								3
							 | 
							fdmd | 
							 |-  ( ph -> dom F = Z )  | 
						
						
							| 11 | 
							
								10
							 | 
							adantr | 
							 |-  ( ( ph /\ j e. Z ) -> dom F = Z )  | 
						
						
							| 12 | 
							
								9 11
							 | 
							eleqtrrd | 
							 |-  ( ( ph /\ j e. Z ) -> j e. dom F )  | 
						
						
							| 13 | 
							
								12
							 | 
							ad2antrr | 
							 |-  ( ( ( ( ph /\ j e. Z ) /\ ( F ` j ) < +oo ) /\ -oo < ( F ` j ) ) -> j e. dom F )  | 
						
						
							| 14 | 
							
								3
							 | 
							ffvelcdmda | 
							 |-  ( ( ph /\ j e. Z ) -> ( F ` j ) e. RR* )  | 
						
						
							| 15 | 
							
								14
							 | 
							ad2antrr | 
							 |-  ( ( ( ( ph /\ j e. Z ) /\ ( F ` j ) < +oo ) /\ -oo < ( F ` j ) ) -> ( F ` j ) e. RR* )  | 
						
						
							| 16 | 
							
								
							 | 
							mnfxr | 
							 |-  -oo e. RR*  | 
						
						
							| 17 | 
							
								16
							 | 
							a1i | 
							 |-  ( ( ( ph /\ j e. Z ) /\ -oo < ( F ` j ) ) -> -oo e. RR* )  | 
						
						
							| 18 | 
							
								14
							 | 
							adantr | 
							 |-  ( ( ( ph /\ j e. Z ) /\ -oo < ( F ` j ) ) -> ( F ` j ) e. RR* )  | 
						
						
							| 19 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( ph /\ j e. Z ) /\ -oo < ( F ` j ) ) -> -oo < ( F ` j ) )  | 
						
						
							| 20 | 
							
								17 18 19
							 | 
							xrgtned | 
							 |-  ( ( ( ph /\ j e. Z ) /\ -oo < ( F ` j ) ) -> ( F ` j ) =/= -oo )  | 
						
						
							| 21 | 
							
								20
							 | 
							adantlr | 
							 |-  ( ( ( ( ph /\ j e. Z ) /\ ( F ` j ) < +oo ) /\ -oo < ( F ` j ) ) -> ( F ` j ) =/= -oo )  | 
						
						
							| 22 | 
							
								14
							 | 
							adantr | 
							 |-  ( ( ( ph /\ j e. Z ) /\ ( F ` j ) < +oo ) -> ( F ` j ) e. RR* )  | 
						
						
							| 23 | 
							
								
							 | 
							pnfxr | 
							 |-  +oo e. RR*  | 
						
						
							| 24 | 
							
								23
							 | 
							a1i | 
							 |-  ( ( ( ph /\ j e. Z ) /\ ( F ` j ) < +oo ) -> +oo e. RR* )  | 
						
						
							| 25 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( ph /\ j e. Z ) /\ ( F ` j ) < +oo ) -> ( F ` j ) < +oo )  | 
						
						
							| 26 | 
							
								22 24 25
							 | 
							xrltned | 
							 |-  ( ( ( ph /\ j e. Z ) /\ ( F ` j ) < +oo ) -> ( F ` j ) =/= +oo )  | 
						
						
							| 27 | 
							
								26
							 | 
							adantr | 
							 |-  ( ( ( ( ph /\ j e. Z ) /\ ( F ` j ) < +oo ) /\ -oo < ( F ` j ) ) -> ( F ` j ) =/= +oo )  | 
						
						
							| 28 | 
							
								15 21 27
							 | 
							xrred | 
							 |-  ( ( ( ( ph /\ j e. Z ) /\ ( F ` j ) < +oo ) /\ -oo < ( F ` j ) ) -> ( F ` j ) e. RR )  | 
						
						
							| 29 | 
							
								13 28
							 | 
							jca | 
							 |-  ( ( ( ( ph /\ j e. Z ) /\ ( F ` j ) < +oo ) /\ -oo < ( F ` j ) ) -> ( j e. dom F /\ ( F ` j ) e. RR ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							expl | 
							 |-  ( ( ph /\ j e. Z ) -> ( ( ( F ` j ) < +oo /\ -oo < ( F ` j ) ) -> ( j e. dom F /\ ( F ` j ) e. RR ) ) )  | 
						
						
							| 31 | 
							
								6 8 30
							 | 
							syl2anc | 
							 |-  ( ( ( ph /\ k e. Z ) /\ j e. ( ZZ>= ` k ) ) -> ( ( ( F ` j ) < +oo /\ -oo < ( F ` j ) ) -> ( j e. dom F /\ ( F ` j ) e. RR ) ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							ralimdva | 
							 |-  ( ( ph /\ k e. Z ) -> ( A. j e. ( ZZ>= ` k ) ( ( F ` j ) < +oo /\ -oo < ( F ` j ) ) -> A. j e. ( ZZ>= ` k ) ( j e. dom F /\ ( F ` j ) e. RR ) ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							imp | 
							 |-  ( ( ( ph /\ k e. Z ) /\ A. j e. ( ZZ>= ` k ) ( ( F ` j ) < +oo /\ -oo < ( F ` j ) ) ) -> A. j e. ( ZZ>= ` k ) ( j e. dom F /\ ( F ` j ) e. RR ) )  | 
						
						
							| 34 | 
							
								3
							 | 
							ffund | 
							 |-  ( ph -> Fun F )  | 
						
						
							| 35 | 
							
								
							 | 
							ffvresb | 
							 |-  ( Fun F -> ( ( F |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> RR <-> A. j e. ( ZZ>= ` k ) ( j e. dom F /\ ( F ` j ) e. RR ) ) )  | 
						
						
							| 36 | 
							
								34 35
							 | 
							syl | 
							 |-  ( ph -> ( ( F |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> RR <-> A. j e. ( ZZ>= ` k ) ( j e. dom F /\ ( F ` j ) e. RR ) ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ k e. Z ) /\ A. j e. ( ZZ>= ` k ) ( ( F ` j ) < +oo /\ -oo < ( F ` j ) ) ) -> ( ( F |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> RR <-> A. j e. ( ZZ>= ` k ) ( j e. dom F /\ ( F ` j ) e. RR ) ) )  | 
						
						
							| 38 | 
							
								33 37
							 | 
							mpbird | 
							 |-  ( ( ( ph /\ k e. Z ) /\ A. j e. ( ZZ>= ` k ) ( ( F ` j ) < +oo /\ -oo < ( F ` j ) ) ) -> ( F |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> RR )  | 
						
						
							| 39 | 
							
								
							 | 
							nfv | 
							 |-  F/ j ph  | 
						
						
							| 40 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ j F  | 
						
						
							| 41 | 
							
								39 40 1 2 3 4
							 | 
							limsupubuz2 | 
							 |-  ( ph -> E. k e. Z A. j e. ( ZZ>= ` k ) ( F ` j ) < +oo )  | 
						
						
							| 42 | 
							
								39 40 1 2 3 5
							 | 
							liminflbuz2 | 
							 |-  ( ph -> E. k e. Z A. j e. ( ZZ>= ` k ) -oo < ( F ` j ) )  | 
						
						
							| 43 | 
							
								2
							 | 
							rexanuz2 | 
							 |-  ( E. k e. Z A. j e. ( ZZ>= ` k ) ( ( F ` j ) < +oo /\ -oo < ( F ` j ) ) <-> ( E. k e. Z A. j e. ( ZZ>= ` k ) ( F ` j ) < +oo /\ E. k e. Z A. j e. ( ZZ>= ` k ) -oo < ( F ` j ) ) )  | 
						
						
							| 44 | 
							
								41 42 43
							 | 
							sylanbrc | 
							 |-  ( ph -> E. k e. Z A. j e. ( ZZ>= ` k ) ( ( F ` j ) < +oo /\ -oo < ( F ` j ) ) )  | 
						
						
							| 45 | 
							
								38 44
							 | 
							reximddv3 | 
							 |-  ( ph -> E. k e. Z ( F |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> RR )  |