| Step |
Hyp |
Ref |
Expression |
| 1 |
|
liminflt.k |
|- F/_ k F |
| 2 |
|
liminflt.m |
|- ( ph -> M e. ZZ ) |
| 3 |
|
liminflt.z |
|- Z = ( ZZ>= ` M ) |
| 4 |
|
liminflt.f |
|- ( ph -> F : Z --> RR ) |
| 5 |
|
liminflt.r |
|- ( ph -> ( liminf ` F ) e. RR ) |
| 6 |
|
liminflt.x |
|- ( ph -> X e. RR+ ) |
| 7 |
2 3 4 5 6
|
liminfltlem |
|- ( ph -> E. i e. Z A. l e. ( ZZ>= ` i ) ( liminf ` F ) < ( ( F ` l ) + X ) ) |
| 8 |
|
fveq2 |
|- ( i = j -> ( ZZ>= ` i ) = ( ZZ>= ` j ) ) |
| 9 |
8
|
raleqdv |
|- ( i = j -> ( A. l e. ( ZZ>= ` i ) ( liminf ` F ) < ( ( F ` l ) + X ) <-> A. l e. ( ZZ>= ` j ) ( liminf ` F ) < ( ( F ` l ) + X ) ) ) |
| 10 |
|
nfcv |
|- F/_ k liminf |
| 11 |
10 1
|
nffv |
|- F/_ k ( liminf ` F ) |
| 12 |
|
nfcv |
|- F/_ k < |
| 13 |
|
nfcv |
|- F/_ k l |
| 14 |
1 13
|
nffv |
|- F/_ k ( F ` l ) |
| 15 |
|
nfcv |
|- F/_ k + |
| 16 |
|
nfcv |
|- F/_ k X |
| 17 |
14 15 16
|
nfov |
|- F/_ k ( ( F ` l ) + X ) |
| 18 |
11 12 17
|
nfbr |
|- F/ k ( liminf ` F ) < ( ( F ` l ) + X ) |
| 19 |
|
nfv |
|- F/ l ( liminf ` F ) < ( ( F ` k ) + X ) |
| 20 |
|
fveq2 |
|- ( l = k -> ( F ` l ) = ( F ` k ) ) |
| 21 |
20
|
oveq1d |
|- ( l = k -> ( ( F ` l ) + X ) = ( ( F ` k ) + X ) ) |
| 22 |
21
|
breq2d |
|- ( l = k -> ( ( liminf ` F ) < ( ( F ` l ) + X ) <-> ( liminf ` F ) < ( ( F ` k ) + X ) ) ) |
| 23 |
18 19 22
|
cbvralw |
|- ( A. l e. ( ZZ>= ` j ) ( liminf ` F ) < ( ( F ` l ) + X ) <-> A. k e. ( ZZ>= ` j ) ( liminf ` F ) < ( ( F ` k ) + X ) ) |
| 24 |
23
|
a1i |
|- ( i = j -> ( A. l e. ( ZZ>= ` j ) ( liminf ` F ) < ( ( F ` l ) + X ) <-> A. k e. ( ZZ>= ` j ) ( liminf ` F ) < ( ( F ` k ) + X ) ) ) |
| 25 |
9 24
|
bitrd |
|- ( i = j -> ( A. l e. ( ZZ>= ` i ) ( liminf ` F ) < ( ( F ` l ) + X ) <-> A. k e. ( ZZ>= ` j ) ( liminf ` F ) < ( ( F ` k ) + X ) ) ) |
| 26 |
25
|
cbvrexvw |
|- ( E. i e. Z A. l e. ( ZZ>= ` i ) ( liminf ` F ) < ( ( F ` l ) + X ) <-> E. j e. Z A. k e. ( ZZ>= ` j ) ( liminf ` F ) < ( ( F ` k ) + X ) ) |
| 27 |
7 26
|
sylib |
|- ( ph -> E. j e. Z A. k e. ( ZZ>= ` j ) ( liminf ` F ) < ( ( F ` k ) + X ) ) |