| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ordom |
|- Ord _om |
| 2 |
|
ordeleqon |
|- ( Ord _om <-> ( _om e. On \/ _om = On ) ) |
| 3 |
|
ordirr |
|- ( Ord _om -> -. _om e. _om ) |
| 4 |
1 3
|
ax-mp |
|- -. _om e. _om |
| 5 |
|
elom |
|- ( _om e. _om <-> ( _om e. On /\ A. x ( Lim x -> _om e. x ) ) ) |
| 6 |
5
|
baib |
|- ( _om e. On -> ( _om e. _om <-> A. x ( Lim x -> _om e. x ) ) ) |
| 7 |
4 6
|
mtbii |
|- ( _om e. On -> -. A. x ( Lim x -> _om e. x ) ) |
| 8 |
|
limomss |
|- ( Lim x -> _om C_ x ) |
| 9 |
|
limord |
|- ( Lim x -> Ord x ) |
| 10 |
|
ordsseleq |
|- ( ( Ord _om /\ Ord x ) -> ( _om C_ x <-> ( _om e. x \/ _om = x ) ) ) |
| 11 |
1 9 10
|
sylancr |
|- ( Lim x -> ( _om C_ x <-> ( _om e. x \/ _om = x ) ) ) |
| 12 |
8 11
|
mpbid |
|- ( Lim x -> ( _om e. x \/ _om = x ) ) |
| 13 |
12
|
ord |
|- ( Lim x -> ( -. _om e. x -> _om = x ) ) |
| 14 |
|
limeq |
|- ( _om = x -> ( Lim _om <-> Lim x ) ) |
| 15 |
14
|
biimprcd |
|- ( Lim x -> ( _om = x -> Lim _om ) ) |
| 16 |
13 15
|
syld |
|- ( Lim x -> ( -. _om e. x -> Lim _om ) ) |
| 17 |
16
|
con1d |
|- ( Lim x -> ( -. Lim _om -> _om e. x ) ) |
| 18 |
17
|
com12 |
|- ( -. Lim _om -> ( Lim x -> _om e. x ) ) |
| 19 |
18
|
alrimiv |
|- ( -. Lim _om -> A. x ( Lim x -> _om e. x ) ) |
| 20 |
7 19
|
nsyl2 |
|- ( _om e. On -> Lim _om ) |
| 21 |
|
limon |
|- Lim On |
| 22 |
|
limeq |
|- ( _om = On -> ( Lim _om <-> Lim On ) ) |
| 23 |
21 22
|
mpbiri |
|- ( _om = On -> Lim _om ) |
| 24 |
20 23
|
jaoi |
|- ( ( _om e. On \/ _om = On ) -> Lim _om ) |
| 25 |
2 24
|
sylbi |
|- ( Ord _om -> Lim _om ) |
| 26 |
1 25
|
ax-mp |
|- Lim _om |