Metamath Proof Explorer


Theorem limom

Description: Omega is a limit ordinal. Theorem 2.8 of BellMachover p. 473. Our proof, however, does not require the Axiom of Infinity. (Contributed by NM, 26-Mar-1995) (Proof shortened by Mario Carneiro, 2-Sep-2015)

Ref Expression
Assertion limom
|- Lim _om

Proof

Step Hyp Ref Expression
1 ordom
 |-  Ord _om
2 ordeleqon
 |-  ( Ord _om <-> ( _om e. On \/ _om = On ) )
3 ordirr
 |-  ( Ord _om -> -. _om e. _om )
4 1 3 ax-mp
 |-  -. _om e. _om
5 elom
 |-  ( _om e. _om <-> ( _om e. On /\ A. x ( Lim x -> _om e. x ) ) )
6 5 baib
 |-  ( _om e. On -> ( _om e. _om <-> A. x ( Lim x -> _om e. x ) ) )
7 4 6 mtbii
 |-  ( _om e. On -> -. A. x ( Lim x -> _om e. x ) )
8 limomss
 |-  ( Lim x -> _om C_ x )
9 limord
 |-  ( Lim x -> Ord x )
10 ordsseleq
 |-  ( ( Ord _om /\ Ord x ) -> ( _om C_ x <-> ( _om e. x \/ _om = x ) ) )
11 1 9 10 sylancr
 |-  ( Lim x -> ( _om C_ x <-> ( _om e. x \/ _om = x ) ) )
12 8 11 mpbid
 |-  ( Lim x -> ( _om e. x \/ _om = x ) )
13 12 ord
 |-  ( Lim x -> ( -. _om e. x -> _om = x ) )
14 limeq
 |-  ( _om = x -> ( Lim _om <-> Lim x ) )
15 14 biimprcd
 |-  ( Lim x -> ( _om = x -> Lim _om ) )
16 13 15 syld
 |-  ( Lim x -> ( -. _om e. x -> Lim _om ) )
17 16 con1d
 |-  ( Lim x -> ( -. Lim _om -> _om e. x ) )
18 17 com12
 |-  ( -. Lim _om -> ( Lim x -> _om e. x ) )
19 18 alrimiv
 |-  ( -. Lim _om -> A. x ( Lim x -> _om e. x ) )
20 7 19 nsyl2
 |-  ( _om e. On -> Lim _om )
21 limon
 |-  Lim On
22 limeq
 |-  ( _om = On -> ( Lim _om <-> Lim On ) )
23 21 22 mpbiri
 |-  ( _om = On -> Lim _om )
24 20 23 jaoi
 |-  ( ( _om e. On \/ _om = On ) -> Lim _om )
25 2 24 sylbi
 |-  ( Ord _om -> Lim _om )
26 1 25 ax-mp
 |-  Lim _om