Step |
Hyp |
Ref |
Expression |
1 |
|
limord |
|- ( Lim A -> Ord A ) |
2 |
|
ordeleqon |
|- ( Ord A <-> ( A e. On \/ A = On ) ) |
3 |
|
elom |
|- ( x e. _om <-> ( x e. On /\ A. y ( Lim y -> x e. y ) ) ) |
4 |
3
|
simprbi |
|- ( x e. _om -> A. y ( Lim y -> x e. y ) ) |
5 |
|
limeq |
|- ( y = A -> ( Lim y <-> Lim A ) ) |
6 |
|
eleq2 |
|- ( y = A -> ( x e. y <-> x e. A ) ) |
7 |
5 6
|
imbi12d |
|- ( y = A -> ( ( Lim y -> x e. y ) <-> ( Lim A -> x e. A ) ) ) |
8 |
7
|
spcgv |
|- ( A e. On -> ( A. y ( Lim y -> x e. y ) -> ( Lim A -> x e. A ) ) ) |
9 |
4 8
|
syl5 |
|- ( A e. On -> ( x e. _om -> ( Lim A -> x e. A ) ) ) |
10 |
9
|
com23 |
|- ( A e. On -> ( Lim A -> ( x e. _om -> x e. A ) ) ) |
11 |
10
|
imp |
|- ( ( A e. On /\ Lim A ) -> ( x e. _om -> x e. A ) ) |
12 |
11
|
ssrdv |
|- ( ( A e. On /\ Lim A ) -> _om C_ A ) |
13 |
12
|
ex |
|- ( A e. On -> ( Lim A -> _om C_ A ) ) |
14 |
|
omsson |
|- _om C_ On |
15 |
|
sseq2 |
|- ( A = On -> ( _om C_ A <-> _om C_ On ) ) |
16 |
14 15
|
mpbiri |
|- ( A = On -> _om C_ A ) |
17 |
16
|
a1d |
|- ( A = On -> ( Lim A -> _om C_ A ) ) |
18 |
13 17
|
jaoi |
|- ( ( A e. On \/ A = On ) -> ( Lim A -> _om C_ A ) ) |
19 |
2 18
|
sylbi |
|- ( Ord A -> ( Lim A -> _om C_ A ) ) |
20 |
1 19
|
mpcom |
|- ( Lim A -> _om C_ A ) |