Metamath Proof Explorer


Theorem limord

Description: A limit ordinal is ordinal. (Contributed by NM, 4-May-1995)

Ref Expression
Assertion limord
|- ( Lim A -> Ord A )

Proof

Step Hyp Ref Expression
1 df-lim
 |-  ( Lim A <-> ( Ord A /\ A =/= (/) /\ A = U. A ) )
2 1 simp1bi
 |-  ( Lim A -> Ord A )