| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sssucid |
|- B C_ suc B |
| 2 |
|
sstr2 |
|- ( A C_ B -> ( B C_ suc B -> A C_ suc B ) ) |
| 3 |
1 2
|
mpi |
|- ( A C_ B -> A C_ suc B ) |
| 4 |
|
eleq1 |
|- ( x = B -> ( x e. A <-> B e. A ) ) |
| 5 |
4
|
biimpcd |
|- ( x e. A -> ( x = B -> B e. A ) ) |
| 6 |
|
limsuc |
|- ( Lim A -> ( B e. A <-> suc B e. A ) ) |
| 7 |
6
|
biimpa |
|- ( ( Lim A /\ B e. A ) -> suc B e. A ) |
| 8 |
|
limord |
|- ( Lim A -> Ord A ) |
| 9 |
|
ordelord |
|- ( ( Ord A /\ B e. A ) -> Ord B ) |
| 10 |
8 9
|
sylan |
|- ( ( Lim A /\ B e. A ) -> Ord B ) |
| 11 |
|
ordsuc |
|- ( Ord B <-> Ord suc B ) |
| 12 |
10 11
|
sylib |
|- ( ( Lim A /\ B e. A ) -> Ord suc B ) |
| 13 |
|
ordtri1 |
|- ( ( Ord A /\ Ord suc B ) -> ( A C_ suc B <-> -. suc B e. A ) ) |
| 14 |
8 12 13
|
syl2an2r |
|- ( ( Lim A /\ B e. A ) -> ( A C_ suc B <-> -. suc B e. A ) ) |
| 15 |
14
|
con2bid |
|- ( ( Lim A /\ B e. A ) -> ( suc B e. A <-> -. A C_ suc B ) ) |
| 16 |
7 15
|
mpbid |
|- ( ( Lim A /\ B e. A ) -> -. A C_ suc B ) |
| 17 |
16
|
ex |
|- ( Lim A -> ( B e. A -> -. A C_ suc B ) ) |
| 18 |
5 17
|
sylan9r |
|- ( ( Lim A /\ x e. A ) -> ( x = B -> -. A C_ suc B ) ) |
| 19 |
18
|
con2d |
|- ( ( Lim A /\ x e. A ) -> ( A C_ suc B -> -. x = B ) ) |
| 20 |
19
|
ex |
|- ( Lim A -> ( x e. A -> ( A C_ suc B -> -. x = B ) ) ) |
| 21 |
20
|
com23 |
|- ( Lim A -> ( A C_ suc B -> ( x e. A -> -. x = B ) ) ) |
| 22 |
21
|
imp31 |
|- ( ( ( Lim A /\ A C_ suc B ) /\ x e. A ) -> -. x = B ) |
| 23 |
|
ssel2 |
|- ( ( A C_ suc B /\ x e. A ) -> x e. suc B ) |
| 24 |
|
vex |
|- x e. _V |
| 25 |
24
|
elsuc |
|- ( x e. suc B <-> ( x e. B \/ x = B ) ) |
| 26 |
23 25
|
sylib |
|- ( ( A C_ suc B /\ x e. A ) -> ( x e. B \/ x = B ) ) |
| 27 |
26
|
ord |
|- ( ( A C_ suc B /\ x e. A ) -> ( -. x e. B -> x = B ) ) |
| 28 |
27
|
con1d |
|- ( ( A C_ suc B /\ x e. A ) -> ( -. x = B -> x e. B ) ) |
| 29 |
28
|
adantll |
|- ( ( ( Lim A /\ A C_ suc B ) /\ x e. A ) -> ( -. x = B -> x e. B ) ) |
| 30 |
22 29
|
mpd |
|- ( ( ( Lim A /\ A C_ suc B ) /\ x e. A ) -> x e. B ) |
| 31 |
30
|
ex |
|- ( ( Lim A /\ A C_ suc B ) -> ( x e. A -> x e. B ) ) |
| 32 |
31
|
ssrdv |
|- ( ( Lim A /\ A C_ suc B ) -> A C_ B ) |
| 33 |
32
|
ex |
|- ( Lim A -> ( A C_ suc B -> A C_ B ) ) |
| 34 |
3 33
|
impbid2 |
|- ( Lim A -> ( A C_ B <-> A C_ suc B ) ) |