| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limsupbnd.1 |
|- ( ph -> B C_ RR ) |
| 2 |
|
limsupbnd.2 |
|- ( ph -> F : B --> RR* ) |
| 3 |
|
limsupbnd.3 |
|- ( ph -> A e. RR* ) |
| 4 |
|
limsupbnd1.4 |
|- ( ph -> E. k e. RR A. j e. B ( k <_ j -> ( F ` j ) <_ A ) ) |
| 5 |
1
|
adantr |
|- ( ( ph /\ k e. RR ) -> B C_ RR ) |
| 6 |
2
|
adantr |
|- ( ( ph /\ k e. RR ) -> F : B --> RR* ) |
| 7 |
|
simpr |
|- ( ( ph /\ k e. RR ) -> k e. RR ) |
| 8 |
3
|
adantr |
|- ( ( ph /\ k e. RR ) -> A e. RR* ) |
| 9 |
|
eqid |
|- ( n e. RR |-> sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) = ( n e. RR |-> sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 10 |
9
|
limsupgle |
|- ( ( ( B C_ RR /\ F : B --> RR* ) /\ k e. RR /\ A e. RR* ) -> ( ( ( n e. RR |-> sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) ` k ) <_ A <-> A. j e. B ( k <_ j -> ( F ` j ) <_ A ) ) ) |
| 11 |
5 6 7 8 10
|
syl211anc |
|- ( ( ph /\ k e. RR ) -> ( ( ( n e. RR |-> sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) ` k ) <_ A <-> A. j e. B ( k <_ j -> ( F ` j ) <_ A ) ) ) |
| 12 |
|
reex |
|- RR e. _V |
| 13 |
12
|
ssex |
|- ( B C_ RR -> B e. _V ) |
| 14 |
1 13
|
syl |
|- ( ph -> B e. _V ) |
| 15 |
|
xrex |
|- RR* e. _V |
| 16 |
15
|
a1i |
|- ( ph -> RR* e. _V ) |
| 17 |
|
fex2 |
|- ( ( F : B --> RR* /\ B e. _V /\ RR* e. _V ) -> F e. _V ) |
| 18 |
2 14 16 17
|
syl3anc |
|- ( ph -> F e. _V ) |
| 19 |
|
limsupcl |
|- ( F e. _V -> ( limsup ` F ) e. RR* ) |
| 20 |
18 19
|
syl |
|- ( ph -> ( limsup ` F ) e. RR* ) |
| 21 |
20
|
xrleidd |
|- ( ph -> ( limsup ` F ) <_ ( limsup ` F ) ) |
| 22 |
9
|
limsuple |
|- ( ( B C_ RR /\ F : B --> RR* /\ ( limsup ` F ) e. RR* ) -> ( ( limsup ` F ) <_ ( limsup ` F ) <-> A. k e. RR ( limsup ` F ) <_ ( ( n e. RR |-> sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) ` k ) ) ) |
| 23 |
1 2 20 22
|
syl3anc |
|- ( ph -> ( ( limsup ` F ) <_ ( limsup ` F ) <-> A. k e. RR ( limsup ` F ) <_ ( ( n e. RR |-> sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) ` k ) ) ) |
| 24 |
21 23
|
mpbid |
|- ( ph -> A. k e. RR ( limsup ` F ) <_ ( ( n e. RR |-> sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) ` k ) ) |
| 25 |
24
|
r19.21bi |
|- ( ( ph /\ k e. RR ) -> ( limsup ` F ) <_ ( ( n e. RR |-> sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) ` k ) ) |
| 26 |
20
|
adantr |
|- ( ( ph /\ k e. RR ) -> ( limsup ` F ) e. RR* ) |
| 27 |
9
|
limsupgf |
|- ( n e. RR |-> sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) : RR --> RR* |
| 28 |
27
|
a1i |
|- ( ph -> ( n e. RR |-> sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) : RR --> RR* ) |
| 29 |
28
|
ffvelcdmda |
|- ( ( ph /\ k e. RR ) -> ( ( n e. RR |-> sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) ` k ) e. RR* ) |
| 30 |
|
xrletr |
|- ( ( ( limsup ` F ) e. RR* /\ ( ( n e. RR |-> sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) ` k ) e. RR* /\ A e. RR* ) -> ( ( ( limsup ` F ) <_ ( ( n e. RR |-> sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) ` k ) /\ ( ( n e. RR |-> sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) ` k ) <_ A ) -> ( limsup ` F ) <_ A ) ) |
| 31 |
26 29 8 30
|
syl3anc |
|- ( ( ph /\ k e. RR ) -> ( ( ( limsup ` F ) <_ ( ( n e. RR |-> sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) ` k ) /\ ( ( n e. RR |-> sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) ` k ) <_ A ) -> ( limsup ` F ) <_ A ) ) |
| 32 |
25 31
|
mpand |
|- ( ( ph /\ k e. RR ) -> ( ( ( n e. RR |-> sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) ` k ) <_ A -> ( limsup ` F ) <_ A ) ) |
| 33 |
11 32
|
sylbird |
|- ( ( ph /\ k e. RR ) -> ( A. j e. B ( k <_ j -> ( F ` j ) <_ A ) -> ( limsup ` F ) <_ A ) ) |
| 34 |
33
|
rexlimdva |
|- ( ph -> ( E. k e. RR A. j e. B ( k <_ j -> ( F ` j ) <_ A ) -> ( limsup ` F ) <_ A ) ) |
| 35 |
4 34
|
mpd |
|- ( ph -> ( limsup ` F ) <_ A ) |