Metamath Proof Explorer


Theorem limsupcld

Description: Closure of the superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypothesis limsupcld.1
|- ( ph -> F e. V )
Assertion limsupcld
|- ( ph -> ( limsup ` F ) e. RR* )

Proof

Step Hyp Ref Expression
1 limsupcld.1
 |-  ( ph -> F e. V )
2 limsupcl
 |-  ( F e. V -> ( limsup ` F ) e. RR* )
3 1 2 syl
 |-  ( ph -> ( limsup ` F ) e. RR* )