Metamath Proof Explorer


Theorem limsupequzmpt

Description: Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupequzmpt.j
|- F/ j ph
limsupequzmpt.m
|- ( ph -> M e. ZZ )
limsupequzmpt.n
|- ( ph -> N e. ZZ )
limsupequzmpt.a
|- A = ( ZZ>= ` M )
limsupequzmpt.b
|- B = ( ZZ>= ` N )
limsupequzmpt.c
|- ( ( ph /\ j e. A ) -> C e. V )
limsupequzmpt.d
|- ( ( ph /\ j e. B ) -> C e. W )
Assertion limsupequzmpt
|- ( ph -> ( limsup ` ( j e. A |-> C ) ) = ( limsup ` ( j e. B |-> C ) ) )

Proof

Step Hyp Ref Expression
1 limsupequzmpt.j
 |-  F/ j ph
2 limsupequzmpt.m
 |-  ( ph -> M e. ZZ )
3 limsupequzmpt.n
 |-  ( ph -> N e. ZZ )
4 limsupequzmpt.a
 |-  A = ( ZZ>= ` M )
5 limsupequzmpt.b
 |-  B = ( ZZ>= ` N )
6 limsupequzmpt.c
 |-  ( ( ph /\ j e. A ) -> C e. V )
7 limsupequzmpt.d
 |-  ( ( ph /\ j e. B ) -> C e. W )
8 eqid
 |-  if ( M <_ N , N , M ) = if ( M <_ N , N , M )
9 1 2 3 4 5 6 7 8 limsupequzmptlem
 |-  ( ph -> ( limsup ` ( j e. A |-> C ) ) = ( limsup ` ( j e. B |-> C ) ) )