Step |
Hyp |
Ref |
Expression |
1 |
|
limsupval.1 |
|- G = ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
2 |
1
|
limsupgval |
|- ( C e. RR -> ( G ` C ) = sup ( ( ( F " ( C [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
3 |
2
|
3ad2ant2 |
|- ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) -> ( G ` C ) = sup ( ( ( F " ( C [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
4 |
3
|
breq1d |
|- ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) -> ( ( G ` C ) <_ A <-> sup ( ( ( F " ( C [,) +oo ) ) i^i RR* ) , RR* , < ) <_ A ) ) |
5 |
|
inss2 |
|- ( ( F " ( C [,) +oo ) ) i^i RR* ) C_ RR* |
6 |
|
simp3 |
|- ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) -> A e. RR* ) |
7 |
|
supxrleub |
|- ( ( ( ( F " ( C [,) +oo ) ) i^i RR* ) C_ RR* /\ A e. RR* ) -> ( sup ( ( ( F " ( C [,) +oo ) ) i^i RR* ) , RR* , < ) <_ A <-> A. x e. ( ( F " ( C [,) +oo ) ) i^i RR* ) x <_ A ) ) |
8 |
5 6 7
|
sylancr |
|- ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) -> ( sup ( ( ( F " ( C [,) +oo ) ) i^i RR* ) , RR* , < ) <_ A <-> A. x e. ( ( F " ( C [,) +oo ) ) i^i RR* ) x <_ A ) ) |
9 |
|
imassrn |
|- ( F " ( C [,) +oo ) ) C_ ran F |
10 |
|
simp1r |
|- ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) -> F : B --> RR* ) |
11 |
10
|
frnd |
|- ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) -> ran F C_ RR* ) |
12 |
9 11
|
sstrid |
|- ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) -> ( F " ( C [,) +oo ) ) C_ RR* ) |
13 |
|
df-ss |
|- ( ( F " ( C [,) +oo ) ) C_ RR* <-> ( ( F " ( C [,) +oo ) ) i^i RR* ) = ( F " ( C [,) +oo ) ) ) |
14 |
12 13
|
sylib |
|- ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) -> ( ( F " ( C [,) +oo ) ) i^i RR* ) = ( F " ( C [,) +oo ) ) ) |
15 |
|
imadmres |
|- ( F " dom ( F |` ( C [,) +oo ) ) ) = ( F " ( C [,) +oo ) ) |
16 |
14 15
|
eqtr4di |
|- ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) -> ( ( F " ( C [,) +oo ) ) i^i RR* ) = ( F " dom ( F |` ( C [,) +oo ) ) ) ) |
17 |
16
|
raleqdv |
|- ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) -> ( A. x e. ( ( F " ( C [,) +oo ) ) i^i RR* ) x <_ A <-> A. x e. ( F " dom ( F |` ( C [,) +oo ) ) ) x <_ A ) ) |
18 |
10
|
ffnd |
|- ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) -> F Fn B ) |
19 |
10
|
fdmd |
|- ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) -> dom F = B ) |
20 |
19
|
ineq2d |
|- ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) -> ( ( C [,) +oo ) i^i dom F ) = ( ( C [,) +oo ) i^i B ) ) |
21 |
|
dmres |
|- dom ( F |` ( C [,) +oo ) ) = ( ( C [,) +oo ) i^i dom F ) |
22 |
|
incom |
|- ( B i^i ( C [,) +oo ) ) = ( ( C [,) +oo ) i^i B ) |
23 |
20 21 22
|
3eqtr4g |
|- ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) -> dom ( F |` ( C [,) +oo ) ) = ( B i^i ( C [,) +oo ) ) ) |
24 |
|
inss1 |
|- ( B i^i ( C [,) +oo ) ) C_ B |
25 |
23 24
|
eqsstrdi |
|- ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) -> dom ( F |` ( C [,) +oo ) ) C_ B ) |
26 |
|
breq1 |
|- ( x = ( F ` j ) -> ( x <_ A <-> ( F ` j ) <_ A ) ) |
27 |
26
|
ralima |
|- ( ( F Fn B /\ dom ( F |` ( C [,) +oo ) ) C_ B ) -> ( A. x e. ( F " dom ( F |` ( C [,) +oo ) ) ) x <_ A <-> A. j e. dom ( F |` ( C [,) +oo ) ) ( F ` j ) <_ A ) ) |
28 |
18 25 27
|
syl2anc |
|- ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) -> ( A. x e. ( F " dom ( F |` ( C [,) +oo ) ) ) x <_ A <-> A. j e. dom ( F |` ( C [,) +oo ) ) ( F ` j ) <_ A ) ) |
29 |
23
|
eleq2d |
|- ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) -> ( j e. dom ( F |` ( C [,) +oo ) ) <-> j e. ( B i^i ( C [,) +oo ) ) ) ) |
30 |
|
elin |
|- ( j e. ( B i^i ( C [,) +oo ) ) <-> ( j e. B /\ j e. ( C [,) +oo ) ) ) |
31 |
29 30
|
bitrdi |
|- ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) -> ( j e. dom ( F |` ( C [,) +oo ) ) <-> ( j e. B /\ j e. ( C [,) +oo ) ) ) ) |
32 |
|
simpl2 |
|- ( ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) /\ j e. B ) -> C e. RR ) |
33 |
|
simp1l |
|- ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) -> B C_ RR ) |
34 |
33
|
sselda |
|- ( ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) /\ j e. B ) -> j e. RR ) |
35 |
|
elicopnf |
|- ( C e. RR -> ( j e. ( C [,) +oo ) <-> ( j e. RR /\ C <_ j ) ) ) |
36 |
35
|
baibd |
|- ( ( C e. RR /\ j e. RR ) -> ( j e. ( C [,) +oo ) <-> C <_ j ) ) |
37 |
32 34 36
|
syl2anc |
|- ( ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) /\ j e. B ) -> ( j e. ( C [,) +oo ) <-> C <_ j ) ) |
38 |
37
|
pm5.32da |
|- ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) -> ( ( j e. B /\ j e. ( C [,) +oo ) ) <-> ( j e. B /\ C <_ j ) ) ) |
39 |
31 38
|
bitrd |
|- ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) -> ( j e. dom ( F |` ( C [,) +oo ) ) <-> ( j e. B /\ C <_ j ) ) ) |
40 |
39
|
imbi1d |
|- ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) -> ( ( j e. dom ( F |` ( C [,) +oo ) ) -> ( F ` j ) <_ A ) <-> ( ( j e. B /\ C <_ j ) -> ( F ` j ) <_ A ) ) ) |
41 |
|
impexp |
|- ( ( ( j e. B /\ C <_ j ) -> ( F ` j ) <_ A ) <-> ( j e. B -> ( C <_ j -> ( F ` j ) <_ A ) ) ) |
42 |
40 41
|
bitrdi |
|- ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) -> ( ( j e. dom ( F |` ( C [,) +oo ) ) -> ( F ` j ) <_ A ) <-> ( j e. B -> ( C <_ j -> ( F ` j ) <_ A ) ) ) ) |
43 |
42
|
ralbidv2 |
|- ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) -> ( A. j e. dom ( F |` ( C [,) +oo ) ) ( F ` j ) <_ A <-> A. j e. B ( C <_ j -> ( F ` j ) <_ A ) ) ) |
44 |
17 28 43
|
3bitrd |
|- ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) -> ( A. x e. ( ( F " ( C [,) +oo ) ) i^i RR* ) x <_ A <-> A. j e. B ( C <_ j -> ( F ` j ) <_ A ) ) ) |
45 |
4 8 44
|
3bitrd |
|- ( ( ( B C_ RR /\ F : B --> RR* ) /\ C e. RR /\ A e. RR* ) -> ( ( G ` C ) <_ A <-> A. j e. B ( C <_ j -> ( F ` j ) <_ A ) ) ) |