| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limsupubuz2.1 |
|- F/ j ph |
| 2 |
|
limsupubuz2.2 |
|- F/_ j F |
| 3 |
|
limsupubuz2.3 |
|- ( ph -> M e. ZZ ) |
| 4 |
|
limsupubuz2.4 |
|- Z = ( ZZ>= ` M ) |
| 5 |
|
limsupubuz2.5 |
|- ( ph -> F : Z --> RR* ) |
| 6 |
|
limsupubuz2.6 |
|- ( ph -> ( limsup ` F ) =/= +oo ) |
| 7 |
4
|
uzssre2 |
|- Z C_ RR |
| 8 |
7
|
a1i |
|- ( ph -> Z C_ RR ) |
| 9 |
1 2 8 5 6
|
limsupub2 |
|- ( ph -> E. k e. RR A. j e. Z ( k <_ j -> ( F ` j ) < +oo ) ) |
| 10 |
4
|
rexuzre |
|- ( M e. ZZ -> ( E. k e. Z A. j e. ( ZZ>= ` k ) ( F ` j ) < +oo <-> E. k e. RR A. j e. Z ( k <_ j -> ( F ` j ) < +oo ) ) ) |
| 11 |
3 10
|
syl |
|- ( ph -> ( E. k e. Z A. j e. ( ZZ>= ` k ) ( F ` j ) < +oo <-> E. k e. RR A. j e. Z ( k <_ j -> ( F ` j ) < +oo ) ) ) |
| 12 |
9 11
|
mpbird |
|- ( ph -> E. k e. Z A. j e. ( ZZ>= ` k ) ( F ` j ) < +oo ) |