Step |
Hyp |
Ref |
Expression |
1 |
|
limsupval.1 |
|- G = ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
2 |
|
limsupval2.1 |
|- ( ph -> F e. V ) |
3 |
|
limsupval2.2 |
|- ( ph -> A C_ RR ) |
4 |
|
limsupval2.3 |
|- ( ph -> sup ( A , RR* , < ) = +oo ) |
5 |
1
|
limsupval |
|- ( F e. V -> ( limsup ` F ) = inf ( ran G , RR* , < ) ) |
6 |
2 5
|
syl |
|- ( ph -> ( limsup ` F ) = inf ( ran G , RR* , < ) ) |
7 |
|
imassrn |
|- ( G " A ) C_ ran G |
8 |
1
|
limsupgf |
|- G : RR --> RR* |
9 |
|
frn |
|- ( G : RR --> RR* -> ran G C_ RR* ) |
10 |
8 9
|
ax-mp |
|- ran G C_ RR* |
11 |
|
infxrlb |
|- ( ( ran G C_ RR* /\ x e. ran G ) -> inf ( ran G , RR* , < ) <_ x ) |
12 |
11
|
ralrimiva |
|- ( ran G C_ RR* -> A. x e. ran G inf ( ran G , RR* , < ) <_ x ) |
13 |
10 12
|
mp1i |
|- ( ph -> A. x e. ran G inf ( ran G , RR* , < ) <_ x ) |
14 |
|
ssralv |
|- ( ( G " A ) C_ ran G -> ( A. x e. ran G inf ( ran G , RR* , < ) <_ x -> A. x e. ( G " A ) inf ( ran G , RR* , < ) <_ x ) ) |
15 |
7 13 14
|
mpsyl |
|- ( ph -> A. x e. ( G " A ) inf ( ran G , RR* , < ) <_ x ) |
16 |
7 10
|
sstri |
|- ( G " A ) C_ RR* |
17 |
|
infxrcl |
|- ( ran G C_ RR* -> inf ( ran G , RR* , < ) e. RR* ) |
18 |
10 17
|
ax-mp |
|- inf ( ran G , RR* , < ) e. RR* |
19 |
|
infxrgelb |
|- ( ( ( G " A ) C_ RR* /\ inf ( ran G , RR* , < ) e. RR* ) -> ( inf ( ran G , RR* , < ) <_ inf ( ( G " A ) , RR* , < ) <-> A. x e. ( G " A ) inf ( ran G , RR* , < ) <_ x ) ) |
20 |
16 18 19
|
mp2an |
|- ( inf ( ran G , RR* , < ) <_ inf ( ( G " A ) , RR* , < ) <-> A. x e. ( G " A ) inf ( ran G , RR* , < ) <_ x ) |
21 |
15 20
|
sylibr |
|- ( ph -> inf ( ran G , RR* , < ) <_ inf ( ( G " A ) , RR* , < ) ) |
22 |
|
ressxr |
|- RR C_ RR* |
23 |
3 22
|
sstrdi |
|- ( ph -> A C_ RR* ) |
24 |
|
supxrunb1 |
|- ( A C_ RR* -> ( A. n e. RR E. x e. A n <_ x <-> sup ( A , RR* , < ) = +oo ) ) |
25 |
23 24
|
syl |
|- ( ph -> ( A. n e. RR E. x e. A n <_ x <-> sup ( A , RR* , < ) = +oo ) ) |
26 |
4 25
|
mpbird |
|- ( ph -> A. n e. RR E. x e. A n <_ x ) |
27 |
|
infxrcl |
|- ( ( G " A ) C_ RR* -> inf ( ( G " A ) , RR* , < ) e. RR* ) |
28 |
16 27
|
mp1i |
|- ( ( ( ph /\ n e. RR ) /\ ( x e. A /\ n <_ x ) ) -> inf ( ( G " A ) , RR* , < ) e. RR* ) |
29 |
3
|
sselda |
|- ( ( ph /\ x e. A ) -> x e. RR ) |
30 |
29
|
ad2ant2r |
|- ( ( ( ph /\ n e. RR ) /\ ( x e. A /\ n <_ x ) ) -> x e. RR ) |
31 |
8
|
ffvelrni |
|- ( x e. RR -> ( G ` x ) e. RR* ) |
32 |
30 31
|
syl |
|- ( ( ( ph /\ n e. RR ) /\ ( x e. A /\ n <_ x ) ) -> ( G ` x ) e. RR* ) |
33 |
8
|
ffvelrni |
|- ( n e. RR -> ( G ` n ) e. RR* ) |
34 |
33
|
ad2antlr |
|- ( ( ( ph /\ n e. RR ) /\ ( x e. A /\ n <_ x ) ) -> ( G ` n ) e. RR* ) |
35 |
|
ffn |
|- ( G : RR --> RR* -> G Fn RR ) |
36 |
8 35
|
mp1i |
|- ( ( ( ph /\ n e. RR ) /\ ( x e. A /\ n <_ x ) ) -> G Fn RR ) |
37 |
3
|
ad2antrr |
|- ( ( ( ph /\ n e. RR ) /\ ( x e. A /\ n <_ x ) ) -> A C_ RR ) |
38 |
|
simprl |
|- ( ( ( ph /\ n e. RR ) /\ ( x e. A /\ n <_ x ) ) -> x e. A ) |
39 |
|
fnfvima |
|- ( ( G Fn RR /\ A C_ RR /\ x e. A ) -> ( G ` x ) e. ( G " A ) ) |
40 |
36 37 38 39
|
syl3anc |
|- ( ( ( ph /\ n e. RR ) /\ ( x e. A /\ n <_ x ) ) -> ( G ` x ) e. ( G " A ) ) |
41 |
|
infxrlb |
|- ( ( ( G " A ) C_ RR* /\ ( G ` x ) e. ( G " A ) ) -> inf ( ( G " A ) , RR* , < ) <_ ( G ` x ) ) |
42 |
16 40 41
|
sylancr |
|- ( ( ( ph /\ n e. RR ) /\ ( x e. A /\ n <_ x ) ) -> inf ( ( G " A ) , RR* , < ) <_ ( G ` x ) ) |
43 |
|
simplr |
|- ( ( ( ph /\ n e. RR ) /\ ( x e. A /\ n <_ x ) ) -> n e. RR ) |
44 |
|
simprr |
|- ( ( ( ph /\ n e. RR ) /\ ( x e. A /\ n <_ x ) ) -> n <_ x ) |
45 |
|
limsupgord |
|- ( ( n e. RR /\ x e. RR /\ n <_ x ) -> sup ( ( ( F " ( x [,) +oo ) ) i^i RR* ) , RR* , < ) <_ sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
46 |
43 30 44 45
|
syl3anc |
|- ( ( ( ph /\ n e. RR ) /\ ( x e. A /\ n <_ x ) ) -> sup ( ( ( F " ( x [,) +oo ) ) i^i RR* ) , RR* , < ) <_ sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
47 |
1
|
limsupgval |
|- ( x e. RR -> ( G ` x ) = sup ( ( ( F " ( x [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
48 |
30 47
|
syl |
|- ( ( ( ph /\ n e. RR ) /\ ( x e. A /\ n <_ x ) ) -> ( G ` x ) = sup ( ( ( F " ( x [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
49 |
1
|
limsupgval |
|- ( n e. RR -> ( G ` n ) = sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
50 |
49
|
ad2antlr |
|- ( ( ( ph /\ n e. RR ) /\ ( x e. A /\ n <_ x ) ) -> ( G ` n ) = sup ( ( ( F " ( n [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
51 |
46 48 50
|
3brtr4d |
|- ( ( ( ph /\ n e. RR ) /\ ( x e. A /\ n <_ x ) ) -> ( G ` x ) <_ ( G ` n ) ) |
52 |
28 32 34 42 51
|
xrletrd |
|- ( ( ( ph /\ n e. RR ) /\ ( x e. A /\ n <_ x ) ) -> inf ( ( G " A ) , RR* , < ) <_ ( G ` n ) ) |
53 |
52
|
rexlimdvaa |
|- ( ( ph /\ n e. RR ) -> ( E. x e. A n <_ x -> inf ( ( G " A ) , RR* , < ) <_ ( G ` n ) ) ) |
54 |
53
|
ralimdva |
|- ( ph -> ( A. n e. RR E. x e. A n <_ x -> A. n e. RR inf ( ( G " A ) , RR* , < ) <_ ( G ` n ) ) ) |
55 |
26 54
|
mpd |
|- ( ph -> A. n e. RR inf ( ( G " A ) , RR* , < ) <_ ( G ` n ) ) |
56 |
8 35
|
ax-mp |
|- G Fn RR |
57 |
|
breq2 |
|- ( x = ( G ` n ) -> ( inf ( ( G " A ) , RR* , < ) <_ x <-> inf ( ( G " A ) , RR* , < ) <_ ( G ` n ) ) ) |
58 |
57
|
ralrn |
|- ( G Fn RR -> ( A. x e. ran G inf ( ( G " A ) , RR* , < ) <_ x <-> A. n e. RR inf ( ( G " A ) , RR* , < ) <_ ( G ` n ) ) ) |
59 |
56 58
|
ax-mp |
|- ( A. x e. ran G inf ( ( G " A ) , RR* , < ) <_ x <-> A. n e. RR inf ( ( G " A ) , RR* , < ) <_ ( G ` n ) ) |
60 |
55 59
|
sylibr |
|- ( ph -> A. x e. ran G inf ( ( G " A ) , RR* , < ) <_ x ) |
61 |
16 27
|
ax-mp |
|- inf ( ( G " A ) , RR* , < ) e. RR* |
62 |
|
infxrgelb |
|- ( ( ran G C_ RR* /\ inf ( ( G " A ) , RR* , < ) e. RR* ) -> ( inf ( ( G " A ) , RR* , < ) <_ inf ( ran G , RR* , < ) <-> A. x e. ran G inf ( ( G " A ) , RR* , < ) <_ x ) ) |
63 |
10 61 62
|
mp2an |
|- ( inf ( ( G " A ) , RR* , < ) <_ inf ( ran G , RR* , < ) <-> A. x e. ran G inf ( ( G " A ) , RR* , < ) <_ x ) |
64 |
60 63
|
sylibr |
|- ( ph -> inf ( ( G " A ) , RR* , < ) <_ inf ( ran G , RR* , < ) ) |
65 |
|
xrletri3 |
|- ( ( inf ( ran G , RR* , < ) e. RR* /\ inf ( ( G " A ) , RR* , < ) e. RR* ) -> ( inf ( ran G , RR* , < ) = inf ( ( G " A ) , RR* , < ) <-> ( inf ( ran G , RR* , < ) <_ inf ( ( G " A ) , RR* , < ) /\ inf ( ( G " A ) , RR* , < ) <_ inf ( ran G , RR* , < ) ) ) ) |
66 |
18 61 65
|
mp2an |
|- ( inf ( ran G , RR* , < ) = inf ( ( G " A ) , RR* , < ) <-> ( inf ( ran G , RR* , < ) <_ inf ( ( G " A ) , RR* , < ) /\ inf ( ( G " A ) , RR* , < ) <_ inf ( ran G , RR* , < ) ) ) |
67 |
21 64 66
|
sylanbrc |
|- ( ph -> inf ( ran G , RR* , < ) = inf ( ( G " A ) , RR* , < ) ) |
68 |
6 67
|
eqtrd |
|- ( ph -> ( limsup ` F ) = inf ( ( G " A ) , RR* , < ) ) |