Metamath Proof Explorer


Theorem limsupvald

Description: The superior limit of a sequence F of extended real numbers is the infimum of the set of suprema of all restrictions of F to an upperset of reals . (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses limsupvald.1
|- ( ph -> F e. V )
limsupvald.2
|- G = ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) )
Assertion limsupvald
|- ( ph -> ( limsup ` F ) = inf ( ran G , RR* , < ) )

Proof

Step Hyp Ref Expression
1 limsupvald.1
 |-  ( ph -> F e. V )
2 limsupvald.2
 |-  G = ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) )
3 2 limsupval
 |-  ( F e. V -> ( limsup ` F ) = inf ( ran G , RR* , < ) )
4 1 3 syl
 |-  ( ph -> ( limsup ` F ) = inf ( ran G , RR* , < ) )