Description: A limit ordinal is its own supremum (union). (Contributed by NM, 4-May-1995)
Ref | Expression | ||
---|---|---|---|
Assertion | limuni | |- ( Lim A -> A = U. A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lim | |- ( Lim A <-> ( Ord A /\ A =/= (/) /\ A = U. A ) ) |
|
2 | 1 | simp3bi | |- ( Lim A -> A = U. A ) |