Description: The union of a limit ordinal is a limit ordinal. (Contributed by NM, 19-Sep-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | limuni2 | |- ( Lim A -> Lim U. A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limuni | |- ( Lim A -> A = U. A ) |
|
2 | limeq | |- ( A = U. A -> ( Lim A <-> Lim U. A ) ) |
|
3 | 1 2 | syl | |- ( Lim A -> ( Lim A <-> Lim U. A ) ) |
4 | 3 | ibi | |- ( Lim A -> Lim U. A ) |