Description: The union of a limit ordinal is a limit ordinal. (Contributed by NM, 19-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | limuni2 | |- ( Lim A -> Lim U. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limuni | |- ( Lim A -> A = U. A ) |
|
| 2 | limeq | |- ( A = U. A -> ( Lim A <-> Lim U. A ) ) |
|
| 3 | 1 2 | syl | |- ( Lim A -> ( Lim A <-> Lim U. A ) ) |
| 4 | 3 | ibi | |- ( Lim A -> Lim U. A ) |