| Step |
Hyp |
Ref |
Expression |
| 1 |
|
line2.i |
|- I = { 1 , 2 } |
| 2 |
|
line2.e |
|- E = ( RR^ ` I ) |
| 3 |
|
line2.p |
|- P = ( RR ^m I ) |
| 4 |
|
line2.l |
|- L = ( LineM ` E ) |
| 5 |
|
line2.g |
|- G = { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } |
| 6 |
|
line2.x |
|- X = { <. 1 , 0 >. , <. 2 , ( C / B ) >. } |
| 7 |
|
line2.y |
|- Y = { <. 1 , 1 >. , <. 2 , ( ( C - A ) / B ) >. } |
| 8 |
|
simp1 |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> A e. RR ) |
| 9 |
8
|
adantr |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> A e. RR ) |
| 10 |
1 3
|
rrx2pxel |
|- ( p e. P -> ( p ` 1 ) e. RR ) |
| 11 |
10
|
adantl |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( p ` 1 ) e. RR ) |
| 12 |
9 11
|
remulcld |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( A x. ( p ` 1 ) ) e. RR ) |
| 13 |
12
|
recnd |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( A x. ( p ` 1 ) ) e. CC ) |
| 14 |
|
simpl2l |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> B e. RR ) |
| 15 |
1 3
|
rrx2pyel |
|- ( p e. P -> ( p ` 2 ) e. RR ) |
| 16 |
15
|
adantl |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( p ` 2 ) e. RR ) |
| 17 |
14 16
|
remulcld |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( B x. ( p ` 2 ) ) e. RR ) |
| 18 |
17
|
recnd |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( B x. ( p ` 2 ) ) e. CC ) |
| 19 |
|
simpl |
|- ( ( B e. RR /\ B =/= 0 ) -> B e. RR ) |
| 20 |
19
|
recnd |
|- ( ( B e. RR /\ B =/= 0 ) -> B e. CC ) |
| 21 |
20
|
3ad2ant2 |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> B e. CC ) |
| 22 |
21
|
adantr |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> B e. CC ) |
| 23 |
|
simp2r |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> B =/= 0 ) |
| 24 |
23
|
adantr |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> B =/= 0 ) |
| 25 |
13 18 22 24
|
divdird |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) / B ) = ( ( ( A x. ( p ` 1 ) ) / B ) + ( ( B x. ( p ` 2 ) ) / B ) ) ) |
| 26 |
15
|
recnd |
|- ( p e. P -> ( p ` 2 ) e. CC ) |
| 27 |
26
|
adantl |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( p ` 2 ) e. CC ) |
| 28 |
27 22 24
|
divcan3d |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( B x. ( p ` 2 ) ) / B ) = ( p ` 2 ) ) |
| 29 |
28
|
oveq2d |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( ( A x. ( p ` 1 ) ) / B ) + ( ( B x. ( p ` 2 ) ) / B ) ) = ( ( ( A x. ( p ` 1 ) ) / B ) + ( p ` 2 ) ) ) |
| 30 |
25 29
|
eqtrd |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) / B ) = ( ( ( A x. ( p ` 1 ) ) / B ) + ( p ` 2 ) ) ) |
| 31 |
30
|
eqeq1d |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) / B ) = ( C / B ) <-> ( ( ( A x. ( p ` 1 ) ) / B ) + ( p ` 2 ) ) = ( C / B ) ) ) |
| 32 |
12 14 24
|
redivcld |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( A x. ( p ` 1 ) ) / B ) e. RR ) |
| 33 |
32
|
recnd |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( A x. ( p ` 1 ) ) / B ) e. CC ) |
| 34 |
|
simp3 |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> C e. RR ) |
| 35 |
19
|
3ad2ant2 |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> B e. RR ) |
| 36 |
34 35 23
|
redivcld |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( C / B ) e. RR ) |
| 37 |
36
|
recnd |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( C / B ) e. CC ) |
| 38 |
37
|
adantr |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( C / B ) e. CC ) |
| 39 |
33 27 38
|
addrsub |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( ( ( A x. ( p ` 1 ) ) / B ) + ( p ` 2 ) ) = ( C / B ) <-> ( p ` 2 ) = ( ( C / B ) - ( ( A x. ( p ` 1 ) ) / B ) ) ) ) |
| 40 |
|
simpl3 |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> C e. RR ) |
| 41 |
40 14 24
|
redivcld |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( C / B ) e. RR ) |
| 42 |
41
|
recnd |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( C / B ) e. CC ) |
| 43 |
33 42
|
negsubdi2d |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> -u ( ( ( A x. ( p ` 1 ) ) / B ) - ( C / B ) ) = ( ( C / B ) - ( ( A x. ( p ` 1 ) ) / B ) ) ) |
| 44 |
33 42
|
negsubdid |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> -u ( ( ( A x. ( p ` 1 ) ) / B ) - ( C / B ) ) = ( -u ( ( A x. ( p ` 1 ) ) / B ) + ( C / B ) ) ) |
| 45 |
43 44
|
eqtr3d |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( C / B ) - ( ( A x. ( p ` 1 ) ) / B ) ) = ( -u ( ( A x. ( p ` 1 ) ) / B ) + ( C / B ) ) ) |
| 46 |
45
|
eqeq2d |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( p ` 2 ) = ( ( C / B ) - ( ( A x. ( p ` 1 ) ) / B ) ) <-> ( p ` 2 ) = ( -u ( ( A x. ( p ` 1 ) ) / B ) + ( C / B ) ) ) ) |
| 47 |
31 39 46
|
3bitrd |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) / B ) = ( C / B ) <-> ( p ` 2 ) = ( -u ( ( A x. ( p ` 1 ) ) / B ) + ( C / B ) ) ) ) |
| 48 |
12 17
|
readdcld |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) e. RR ) |
| 49 |
48
|
recnd |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) e. CC ) |
| 50 |
34
|
recnd |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> C e. CC ) |
| 51 |
50
|
adantr |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> C e. CC ) |
| 52 |
|
recn |
|- ( B e. RR -> B e. CC ) |
| 53 |
52
|
anim1i |
|- ( ( B e. RR /\ B =/= 0 ) -> ( B e. CC /\ B =/= 0 ) ) |
| 54 |
53
|
3ad2ant2 |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( B e. CC /\ B =/= 0 ) ) |
| 55 |
54
|
adantr |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( B e. CC /\ B =/= 0 ) ) |
| 56 |
|
div11 |
|- ( ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) e. CC /\ C e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) / B ) = ( C / B ) <-> ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C ) ) |
| 57 |
49 51 55 56
|
syl3anc |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) / B ) = ( C / B ) <-> ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C ) ) |
| 58 |
13 22 24
|
divnegd |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> -u ( ( A x. ( p ` 1 ) ) / B ) = ( -u ( A x. ( p ` 1 ) ) / B ) ) |
| 59 |
8
|
recnd |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> A e. CC ) |
| 60 |
59
|
adantr |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> A e. CC ) |
| 61 |
10
|
recnd |
|- ( p e. P -> ( p ` 1 ) e. CC ) |
| 62 |
61
|
adantl |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( p ` 1 ) e. CC ) |
| 63 |
60 62
|
mulneg1d |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( -u A x. ( p ` 1 ) ) = -u ( A x. ( p ` 1 ) ) ) |
| 64 |
63
|
eqcomd |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> -u ( A x. ( p ` 1 ) ) = ( -u A x. ( p ` 1 ) ) ) |
| 65 |
64
|
oveq1d |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( -u ( A x. ( p ` 1 ) ) / B ) = ( ( -u A x. ( p ` 1 ) ) / B ) ) |
| 66 |
58 65
|
eqtrd |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> -u ( ( A x. ( p ` 1 ) ) / B ) = ( ( -u A x. ( p ` 1 ) ) / B ) ) |
| 67 |
|
renegcl |
|- ( A e. RR -> -u A e. RR ) |
| 68 |
67
|
recnd |
|- ( A e. RR -> -u A e. CC ) |
| 69 |
68
|
3ad2ant1 |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> -u A e. CC ) |
| 70 |
69
|
adantr |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> -u A e. CC ) |
| 71 |
|
div23 |
|- ( ( -u A e. CC /\ ( p ` 1 ) e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( -u A x. ( p ` 1 ) ) / B ) = ( ( -u A / B ) x. ( p ` 1 ) ) ) |
| 72 |
70 62 55 71
|
syl3anc |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( -u A x. ( p ` 1 ) ) / B ) = ( ( -u A / B ) x. ( p ` 1 ) ) ) |
| 73 |
6
|
fveq1i |
|- ( X ` 1 ) = ( { <. 1 , 0 >. , <. 2 , ( C / B ) >. } ` 1 ) |
| 74 |
|
1ex |
|- 1 e. _V |
| 75 |
|
c0ex |
|- 0 e. _V |
| 76 |
|
1ne2 |
|- 1 =/= 2 |
| 77 |
74 75 76
|
3pm3.2i |
|- ( 1 e. _V /\ 0 e. _V /\ 1 =/= 2 ) |
| 78 |
|
fvpr1g |
|- ( ( 1 e. _V /\ 0 e. _V /\ 1 =/= 2 ) -> ( { <. 1 , 0 >. , <. 2 , ( C / B ) >. } ` 1 ) = 0 ) |
| 79 |
77 78
|
mp1i |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( { <. 1 , 0 >. , <. 2 , ( C / B ) >. } ` 1 ) = 0 ) |
| 80 |
73 79
|
eqtrid |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( X ` 1 ) = 0 ) |
| 81 |
80
|
adantr |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( X ` 1 ) = 0 ) |
| 82 |
81
|
oveq2d |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( p ` 1 ) - ( X ` 1 ) ) = ( ( p ` 1 ) - 0 ) ) |
| 83 |
62
|
subid1d |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( p ` 1 ) - 0 ) = ( p ` 1 ) ) |
| 84 |
82 83
|
eqtr2d |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( p ` 1 ) = ( ( p ` 1 ) - ( X ` 1 ) ) ) |
| 85 |
84
|
oveq2d |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( -u A / B ) x. ( p ` 1 ) ) = ( ( -u A / B ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) ) |
| 86 |
66 72 85
|
3eqtrd |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> -u ( ( A x. ( p ` 1 ) ) / B ) = ( ( -u A / B ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) ) |
| 87 |
86
|
oveq1d |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( -u ( ( A x. ( p ` 1 ) ) / B ) + ( C / B ) ) = ( ( ( -u A / B ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) + ( C / B ) ) ) |
| 88 |
87
|
eqeq2d |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( p ` 2 ) = ( -u ( ( A x. ( p ` 1 ) ) / B ) + ( C / B ) ) <-> ( p ` 2 ) = ( ( ( -u A / B ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) + ( C / B ) ) ) ) |
| 89 |
47 57 88
|
3bitr3d |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 2 ) = ( ( ( -u A / B ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) + ( C / B ) ) ) ) |
| 90 |
|
recn |
|- ( C e. RR -> C e. CC ) |
| 91 |
90
|
adantl |
|- ( ( A e. RR /\ C e. RR ) -> C e. CC ) |
| 92 |
|
recn |
|- ( A e. RR -> A e. CC ) |
| 93 |
92
|
adantr |
|- ( ( A e. RR /\ C e. RR ) -> A e. CC ) |
| 94 |
|
sub32 |
|- ( ( C e. CC /\ A e. CC /\ C e. CC ) -> ( ( C - A ) - C ) = ( ( C - C ) - A ) ) |
| 95 |
|
subid |
|- ( C e. CC -> ( C - C ) = 0 ) |
| 96 |
95
|
3ad2ant1 |
|- ( ( C e. CC /\ A e. CC /\ C e. CC ) -> ( C - C ) = 0 ) |
| 97 |
96
|
oveq1d |
|- ( ( C e. CC /\ A e. CC /\ C e. CC ) -> ( ( C - C ) - A ) = ( 0 - A ) ) |
| 98 |
|
df-neg |
|- -u A = ( 0 - A ) |
| 99 |
97 98
|
eqtr4di |
|- ( ( C e. CC /\ A e. CC /\ C e. CC ) -> ( ( C - C ) - A ) = -u A ) |
| 100 |
94 99
|
eqtr2d |
|- ( ( C e. CC /\ A e. CC /\ C e. CC ) -> -u A = ( ( C - A ) - C ) ) |
| 101 |
91 93 91 100
|
syl3anc |
|- ( ( A e. RR /\ C e. RR ) -> -u A = ( ( C - A ) - C ) ) |
| 102 |
101
|
3adant2 |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> -u A = ( ( C - A ) - C ) ) |
| 103 |
102
|
oveq1d |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( -u A / B ) = ( ( ( C - A ) - C ) / B ) ) |
| 104 |
103
|
adantr |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( -u A / B ) = ( ( ( C - A ) - C ) / B ) ) |
| 105 |
104
|
oveq1d |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( -u A / B ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) = ( ( ( ( C - A ) - C ) / B ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) ) |
| 106 |
105
|
oveq1d |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( ( -u A / B ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) + ( C / B ) ) = ( ( ( ( ( C - A ) - C ) / B ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) + ( C / B ) ) ) |
| 107 |
106
|
eqeq2d |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( p ` 2 ) = ( ( ( -u A / B ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) + ( C / B ) ) <-> ( p ` 2 ) = ( ( ( ( ( C - A ) - C ) / B ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) + ( C / B ) ) ) ) |
| 108 |
89 107
|
bitrd |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 2 ) = ( ( ( ( ( C - A ) - C ) / B ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) + ( C / B ) ) ) ) |
| 109 |
7
|
fveq1i |
|- ( Y ` 2 ) = ( { <. 1 , 1 >. , <. 2 , ( ( C - A ) / B ) >. } ` 2 ) |
| 110 |
|
2ex |
|- 2 e. _V |
| 111 |
110
|
a1i |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> 2 e. _V ) |
| 112 |
|
resubcl |
|- ( ( C e. RR /\ A e. RR ) -> ( C - A ) e. RR ) |
| 113 |
112
|
ancoms |
|- ( ( A e. RR /\ C e. RR ) -> ( C - A ) e. RR ) |
| 114 |
113
|
3adant2 |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( C - A ) e. RR ) |
| 115 |
114 35 23
|
redivcld |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( ( C - A ) / B ) e. RR ) |
| 116 |
76
|
a1i |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> 1 =/= 2 ) |
| 117 |
111 115 116
|
3jca |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( 2 e. _V /\ ( ( C - A ) / B ) e. RR /\ 1 =/= 2 ) ) |
| 118 |
117
|
adantr |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( 2 e. _V /\ ( ( C - A ) / B ) e. RR /\ 1 =/= 2 ) ) |
| 119 |
|
fvpr2g |
|- ( ( 2 e. _V /\ ( ( C - A ) / B ) e. RR /\ 1 =/= 2 ) -> ( { <. 1 , 1 >. , <. 2 , ( ( C - A ) / B ) >. } ` 2 ) = ( ( C - A ) / B ) ) |
| 120 |
118 119
|
syl |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( { <. 1 , 1 >. , <. 2 , ( ( C - A ) / B ) >. } ` 2 ) = ( ( C - A ) / B ) ) |
| 121 |
109 120
|
eqtrid |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( Y ` 2 ) = ( ( C - A ) / B ) ) |
| 122 |
6
|
fveq1i |
|- ( X ` 2 ) = ( { <. 1 , 0 >. , <. 2 , ( C / B ) >. } ` 2 ) |
| 123 |
|
fvpr2g |
|- ( ( 2 e. _V /\ ( C / B ) e. RR /\ 1 =/= 2 ) -> ( { <. 1 , 0 >. , <. 2 , ( C / B ) >. } ` 2 ) = ( C / B ) ) |
| 124 |
110 36 116 123
|
mp3an2i |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( { <. 1 , 0 >. , <. 2 , ( C / B ) >. } ` 2 ) = ( C / B ) ) |
| 125 |
122 124
|
eqtrid |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( X ` 2 ) = ( C / B ) ) |
| 126 |
125
|
adantr |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( X ` 2 ) = ( C / B ) ) |
| 127 |
121 126
|
oveq12d |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( Y ` 2 ) - ( X ` 2 ) ) = ( ( ( C - A ) / B ) - ( C / B ) ) ) |
| 128 |
34 8
|
resubcld |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( C - A ) e. RR ) |
| 129 |
128
|
recnd |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( C - A ) e. CC ) |
| 130 |
|
divsubdir |
|- ( ( ( C - A ) e. CC /\ C e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( ( C - A ) - C ) / B ) = ( ( ( C - A ) / B ) - ( C / B ) ) ) |
| 131 |
129 50 54 130
|
syl3anc |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( ( ( C - A ) - C ) / B ) = ( ( ( C - A ) / B ) - ( C / B ) ) ) |
| 132 |
131
|
eqcomd |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( ( ( C - A ) / B ) - ( C / B ) ) = ( ( ( C - A ) - C ) / B ) ) |
| 133 |
132
|
adantr |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( ( C - A ) / B ) - ( C / B ) ) = ( ( ( C - A ) - C ) / B ) ) |
| 134 |
127 133
|
eqtr2d |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( ( C - A ) - C ) / B ) = ( ( Y ` 2 ) - ( X ` 2 ) ) ) |
| 135 |
134
|
oveq1d |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( ( ( C - A ) - C ) / B ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) = ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) ) |
| 136 |
135
|
oveq1d |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( ( ( ( C - A ) - C ) / B ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) + ( C / B ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) + ( C / B ) ) ) |
| 137 |
136
|
eqeq2d |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( p ` 2 ) = ( ( ( ( ( C - A ) - C ) / B ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) + ( C / B ) ) <-> ( p ` 2 ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) + ( C / B ) ) ) ) |
| 138 |
7
|
fveq1i |
|- ( Y ` 1 ) = ( { <. 1 , 1 >. , <. 2 , ( ( C - A ) / B ) >. } ` 1 ) |
| 139 |
74 74
|
fvpr1 |
|- ( 1 =/= 2 -> ( { <. 1 , 1 >. , <. 2 , ( ( C - A ) / B ) >. } ` 1 ) = 1 ) |
| 140 |
76 139
|
ax-mp |
|- ( { <. 1 , 1 >. , <. 2 , ( ( C - A ) / B ) >. } ` 1 ) = 1 |
| 141 |
138 140
|
eqtri |
|- ( Y ` 1 ) = 1 |
| 142 |
74 75
|
fvpr1 |
|- ( 1 =/= 2 -> ( { <. 1 , 0 >. , <. 2 , ( C / B ) >. } ` 1 ) = 0 ) |
| 143 |
76 142
|
ax-mp |
|- ( { <. 1 , 0 >. , <. 2 , ( C / B ) >. } ` 1 ) = 0 |
| 144 |
73 143
|
eqtri |
|- ( X ` 1 ) = 0 |
| 145 |
141 144
|
oveq12i |
|- ( ( Y ` 1 ) - ( X ` 1 ) ) = ( 1 - 0 ) |
| 146 |
|
1m0e1 |
|- ( 1 - 0 ) = 1 |
| 147 |
145 146
|
eqtri |
|- ( ( Y ` 1 ) - ( X ` 1 ) ) = 1 |
| 148 |
147
|
a1i |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( ( Y ` 1 ) - ( X ` 1 ) ) = 1 ) |
| 149 |
148
|
oveq2d |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( ( ( Y ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 1 ) - ( X ` 1 ) ) ) = ( ( ( Y ` 2 ) - ( X ` 2 ) ) / 1 ) ) |
| 150 |
110 115 116 119
|
mp3an2i |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( { <. 1 , 1 >. , <. 2 , ( ( C - A ) / B ) >. } ` 2 ) = ( ( C - A ) / B ) ) |
| 151 |
109 150
|
eqtrid |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( Y ` 2 ) = ( ( C - A ) / B ) ) |
| 152 |
115
|
recnd |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( ( C - A ) / B ) e. CC ) |
| 153 |
151 152
|
eqeltrd |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( Y ` 2 ) e. CC ) |
| 154 |
125 37
|
eqeltrd |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( X ` 2 ) e. CC ) |
| 155 |
153 154
|
subcld |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( ( Y ` 2 ) - ( X ` 2 ) ) e. CC ) |
| 156 |
155
|
div1d |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( ( ( Y ` 2 ) - ( X ` 2 ) ) / 1 ) = ( ( Y ` 2 ) - ( X ` 2 ) ) ) |
| 157 |
149 156
|
eqtrd |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( ( ( Y ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 1 ) - ( X ` 1 ) ) ) = ( ( Y ` 2 ) - ( X ` 2 ) ) ) |
| 158 |
157
|
oveq1d |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 1 ) - ( X ` 1 ) ) ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) = ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) ) |
| 159 |
158 125
|
oveq12d |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 1 ) - ( X ` 1 ) ) ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) + ( X ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) + ( C / B ) ) ) |
| 160 |
159
|
adantr |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 1 ) - ( X ` 1 ) ) ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) + ( X ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) + ( C / B ) ) ) |
| 161 |
160
|
eqcomd |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) + ( C / B ) ) = ( ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 1 ) - ( X ` 1 ) ) ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) + ( X ` 2 ) ) ) |
| 162 |
161
|
eqeq2d |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( p ` 2 ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) + ( C / B ) ) <-> ( p ` 2 ) = ( ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 1 ) - ( X ` 1 ) ) ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) + ( X ` 2 ) ) ) ) |
| 163 |
108 137 162
|
3bitrd |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 2 ) = ( ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 1 ) - ( X ` 1 ) ) ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) + ( X ` 2 ) ) ) ) |
| 164 |
163
|
rabbidva |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } = { p e. P | ( p ` 2 ) = ( ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 1 ) - ( X ` 1 ) ) ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) + ( X ` 2 ) ) } ) |
| 165 |
5
|
a1i |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> G = { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } ) |
| 166 |
74 110
|
pm3.2i |
|- ( 1 e. _V /\ 2 e. _V ) |
| 167 |
36 75
|
jctil |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( 0 e. _V /\ ( C / B ) e. RR ) ) |
| 168 |
|
fprg |
|- ( ( ( 1 e. _V /\ 2 e. _V ) /\ ( 0 e. _V /\ ( C / B ) e. RR ) /\ 1 =/= 2 ) -> { <. 1 , 0 >. , <. 2 , ( C / B ) >. } : { 1 , 2 } --> { 0 , ( C / B ) } ) |
| 169 |
166 167 116 168
|
mp3an2i |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> { <. 1 , 0 >. , <. 2 , ( C / B ) >. } : { 1 , 2 } --> { 0 , ( C / B ) } ) |
| 170 |
|
0red |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> 0 e. RR ) |
| 171 |
170 36
|
prssd |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> { 0 , ( C / B ) } C_ RR ) |
| 172 |
169 171
|
fssd |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> { <. 1 , 0 >. , <. 2 , ( C / B ) >. } : { 1 , 2 } --> RR ) |
| 173 |
6
|
feq1i |
|- ( X : { 1 , 2 } --> RR <-> { <. 1 , 0 >. , <. 2 , ( C / B ) >. } : { 1 , 2 } --> RR ) |
| 174 |
172 173
|
sylibr |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> X : { 1 , 2 } --> RR ) |
| 175 |
|
reex |
|- RR e. _V |
| 176 |
|
prex |
|- { 1 , 2 } e. _V |
| 177 |
175 176
|
elmap |
|- ( X e. ( RR ^m { 1 , 2 } ) <-> X : { 1 , 2 } --> RR ) |
| 178 |
174 177
|
sylibr |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> X e. ( RR ^m { 1 , 2 } ) ) |
| 179 |
1
|
oveq2i |
|- ( RR ^m I ) = ( RR ^m { 1 , 2 } ) |
| 180 |
3 179
|
eqtri |
|- P = ( RR ^m { 1 , 2 } ) |
| 181 |
178 180
|
eleqtrrdi |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> X e. P ) |
| 182 |
115 74
|
jctil |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( 1 e. _V /\ ( ( C - A ) / B ) e. RR ) ) |
| 183 |
|
fprg |
|- ( ( ( 1 e. _V /\ 2 e. _V ) /\ ( 1 e. _V /\ ( ( C - A ) / B ) e. RR ) /\ 1 =/= 2 ) -> { <. 1 , 1 >. , <. 2 , ( ( C - A ) / B ) >. } : { 1 , 2 } --> { 1 , ( ( C - A ) / B ) } ) |
| 184 |
166 182 116 183
|
mp3an2i |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> { <. 1 , 1 >. , <. 2 , ( ( C - A ) / B ) >. } : { 1 , 2 } --> { 1 , ( ( C - A ) / B ) } ) |
| 185 |
|
1red |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> 1 e. RR ) |
| 186 |
185 115
|
prssd |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> { 1 , ( ( C - A ) / B ) } C_ RR ) |
| 187 |
184 186
|
fssd |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> { <. 1 , 1 >. , <. 2 , ( ( C - A ) / B ) >. } : { 1 , 2 } --> RR ) |
| 188 |
7
|
feq1i |
|- ( Y : { 1 , 2 } --> RR <-> { <. 1 , 1 >. , <. 2 , ( ( C - A ) / B ) >. } : { 1 , 2 } --> RR ) |
| 189 |
187 188
|
sylibr |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> Y : { 1 , 2 } --> RR ) |
| 190 |
175 176
|
elmap |
|- ( Y e. ( RR ^m { 1 , 2 } ) <-> Y : { 1 , 2 } --> RR ) |
| 191 |
189 190
|
sylibr |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> Y e. ( RR ^m { 1 , 2 } ) ) |
| 192 |
191 180
|
eleqtrrdi |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> Y e. P ) |
| 193 |
|
0ne1 |
|- 0 =/= 1 |
| 194 |
77 78
|
ax-mp |
|- ( { <. 1 , 0 >. , <. 2 , ( C / B ) >. } ` 1 ) = 0 |
| 195 |
73 194
|
eqtri |
|- ( X ` 1 ) = 0 |
| 196 |
74 74 76
|
3pm3.2i |
|- ( 1 e. _V /\ 1 e. _V /\ 1 =/= 2 ) |
| 197 |
|
fvpr1g |
|- ( ( 1 e. _V /\ 1 e. _V /\ 1 =/= 2 ) -> ( { <. 1 , 1 >. , <. 2 , ( ( C - A ) / B ) >. } ` 1 ) = 1 ) |
| 198 |
196 197
|
ax-mp |
|- ( { <. 1 , 1 >. , <. 2 , ( ( C - A ) / B ) >. } ` 1 ) = 1 |
| 199 |
138 198
|
eqtri |
|- ( Y ` 1 ) = 1 |
| 200 |
195 199
|
neeq12i |
|- ( ( X ` 1 ) =/= ( Y ` 1 ) <-> 0 =/= 1 ) |
| 201 |
193 200
|
mpbir |
|- ( X ` 1 ) =/= ( Y ` 1 ) |
| 202 |
201
|
a1i |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( X ` 1 ) =/= ( Y ` 1 ) ) |
| 203 |
|
eqid |
|- ( ( ( Y ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 1 ) - ( X ` 1 ) ) ) = ( ( ( Y ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 1 ) - ( X ` 1 ) ) ) |
| 204 |
1 2 3 4 203
|
rrx2linesl |
|- ( ( X e. P /\ Y e. P /\ ( X ` 1 ) =/= ( Y ` 1 ) ) -> ( X L Y ) = { p e. P | ( p ` 2 ) = ( ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 1 ) - ( X ` 1 ) ) ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) + ( X ` 2 ) ) } ) |
| 205 |
181 192 202 204
|
syl3anc |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( X L Y ) = { p e. P | ( p ` 2 ) = ( ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 1 ) - ( X ` 1 ) ) ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) + ( X ` 2 ) ) } ) |
| 206 |
164 165 205
|
3eqtr4d |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> G = ( X L Y ) ) |