| Step |
Hyp |
Ref |
Expression |
| 1 |
|
line2.i |
|- I = { 1 , 2 } |
| 2 |
|
line2.e |
|- E = ( RR^ ` I ) |
| 3 |
|
line2.p |
|- P = ( RR ^m I ) |
| 4 |
|
line2.l |
|- L = ( LineM ` E ) |
| 5 |
|
line2.g |
|- G = { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } |
| 6 |
|
line2x.x |
|- X = { <. 1 , 0 >. , <. 2 , M >. } |
| 7 |
|
line2x.y |
|- Y = { <. 1 , 1 >. , <. 2 , M >. } |
| 8 |
5
|
a1i |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) -> G = { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } ) |
| 9 |
|
1ex |
|- 1 e. _V |
| 10 |
|
2ex |
|- 2 e. _V |
| 11 |
9 10
|
pm3.2i |
|- ( 1 e. _V /\ 2 e. _V ) |
| 12 |
|
c0ex |
|- 0 e. _V |
| 13 |
12
|
jctl |
|- ( M e. RR -> ( 0 e. _V /\ M e. RR ) ) |
| 14 |
|
1ne2 |
|- 1 =/= 2 |
| 15 |
14
|
a1i |
|- ( M e. RR -> 1 =/= 2 ) |
| 16 |
|
fprg |
|- ( ( ( 1 e. _V /\ 2 e. _V ) /\ ( 0 e. _V /\ M e. RR ) /\ 1 =/= 2 ) -> { <. 1 , 0 >. , <. 2 , M >. } : { 1 , 2 } --> { 0 , M } ) |
| 17 |
|
0red |
|- ( ( 1 e. _V /\ 2 e. _V ) -> 0 e. RR ) |
| 18 |
|
simpr |
|- ( ( 0 e. _V /\ M e. RR ) -> M e. RR ) |
| 19 |
17 18
|
anim12i |
|- ( ( ( 1 e. _V /\ 2 e. _V ) /\ ( 0 e. _V /\ M e. RR ) ) -> ( 0 e. RR /\ M e. RR ) ) |
| 20 |
19
|
3adant3 |
|- ( ( ( 1 e. _V /\ 2 e. _V ) /\ ( 0 e. _V /\ M e. RR ) /\ 1 =/= 2 ) -> ( 0 e. RR /\ M e. RR ) ) |
| 21 |
|
prssi |
|- ( ( 0 e. RR /\ M e. RR ) -> { 0 , M } C_ RR ) |
| 22 |
20 21
|
syl |
|- ( ( ( 1 e. _V /\ 2 e. _V ) /\ ( 0 e. _V /\ M e. RR ) /\ 1 =/= 2 ) -> { 0 , M } C_ RR ) |
| 23 |
16 22
|
fssd |
|- ( ( ( 1 e. _V /\ 2 e. _V ) /\ ( 0 e. _V /\ M e. RR ) /\ 1 =/= 2 ) -> { <. 1 , 0 >. , <. 2 , M >. } : { 1 , 2 } --> RR ) |
| 24 |
11 13 15 23
|
mp3an2i |
|- ( M e. RR -> { <. 1 , 0 >. , <. 2 , M >. } : { 1 , 2 } --> RR ) |
| 25 |
1
|
feq2i |
|- ( { <. 1 , 0 >. , <. 2 , M >. } : I --> RR <-> { <. 1 , 0 >. , <. 2 , M >. } : { 1 , 2 } --> RR ) |
| 26 |
24 25
|
sylibr |
|- ( M e. RR -> { <. 1 , 0 >. , <. 2 , M >. } : I --> RR ) |
| 27 |
|
reex |
|- RR e. _V |
| 28 |
|
prex |
|- { 1 , 2 } e. _V |
| 29 |
1 28
|
eqeltri |
|- I e. _V |
| 30 |
27 29
|
elmap |
|- ( { <. 1 , 0 >. , <. 2 , M >. } e. ( RR ^m I ) <-> { <. 1 , 0 >. , <. 2 , M >. } : I --> RR ) |
| 31 |
26 30
|
sylibr |
|- ( M e. RR -> { <. 1 , 0 >. , <. 2 , M >. } e. ( RR ^m I ) ) |
| 32 |
31 6 3
|
3eltr4g |
|- ( M e. RR -> X e. P ) |
| 33 |
9
|
jctl |
|- ( M e. RR -> ( 1 e. _V /\ M e. RR ) ) |
| 34 |
|
fprg |
|- ( ( ( 1 e. _V /\ 2 e. _V ) /\ ( 1 e. _V /\ M e. RR ) /\ 1 =/= 2 ) -> { <. 1 , 1 >. , <. 2 , M >. } : { 1 , 2 } --> { 1 , M } ) |
| 35 |
11 33 15 34
|
mp3an2i |
|- ( M e. RR -> { <. 1 , 1 >. , <. 2 , M >. } : { 1 , 2 } --> { 1 , M } ) |
| 36 |
|
1re |
|- 1 e. RR |
| 37 |
|
prssi |
|- ( ( 1 e. RR /\ M e. RR ) -> { 1 , M } C_ RR ) |
| 38 |
36 37
|
mpan |
|- ( M e. RR -> { 1 , M } C_ RR ) |
| 39 |
35 38
|
fssd |
|- ( M e. RR -> { <. 1 , 1 >. , <. 2 , M >. } : { 1 , 2 } --> RR ) |
| 40 |
1
|
feq2i |
|- ( { <. 1 , 1 >. , <. 2 , M >. } : I --> RR <-> { <. 1 , 1 >. , <. 2 , M >. } : { 1 , 2 } --> RR ) |
| 41 |
39 40
|
sylibr |
|- ( M e. RR -> { <. 1 , 1 >. , <. 2 , M >. } : I --> RR ) |
| 42 |
27 29
|
pm3.2i |
|- ( RR e. _V /\ I e. _V ) |
| 43 |
|
elmapg |
|- ( ( RR e. _V /\ I e. _V ) -> ( { <. 1 , 1 >. , <. 2 , M >. } e. ( RR ^m I ) <-> { <. 1 , 1 >. , <. 2 , M >. } : I --> RR ) ) |
| 44 |
42 43
|
mp1i |
|- ( M e. RR -> ( { <. 1 , 1 >. , <. 2 , M >. } e. ( RR ^m I ) <-> { <. 1 , 1 >. , <. 2 , M >. } : I --> RR ) ) |
| 45 |
41 44
|
mpbird |
|- ( M e. RR -> { <. 1 , 1 >. , <. 2 , M >. } e. ( RR ^m I ) ) |
| 46 |
45 7 3
|
3eltr4g |
|- ( M e. RR -> Y e. P ) |
| 47 |
|
opex |
|- <. 1 , 0 >. e. _V |
| 48 |
|
opex |
|- <. 2 , M >. e. _V |
| 49 |
47 48
|
pm3.2i |
|- ( <. 1 , 0 >. e. _V /\ <. 2 , M >. e. _V ) |
| 50 |
|
opex |
|- <. 1 , 1 >. e. _V |
| 51 |
50 48
|
pm3.2i |
|- ( <. 1 , 1 >. e. _V /\ <. 2 , M >. e. _V ) |
| 52 |
49 51
|
pm3.2i |
|- ( ( <. 1 , 0 >. e. _V /\ <. 2 , M >. e. _V ) /\ ( <. 1 , 1 >. e. _V /\ <. 2 , M >. e. _V ) ) |
| 53 |
14
|
orci |
|- ( 1 =/= 2 \/ 0 =/= M ) |
| 54 |
9 12
|
opthne |
|- ( <. 1 , 0 >. =/= <. 2 , M >. <-> ( 1 =/= 2 \/ 0 =/= M ) ) |
| 55 |
53 54
|
mpbir |
|- <. 1 , 0 >. =/= <. 2 , M >. |
| 56 |
55
|
a1i |
|- ( M e. RR -> <. 1 , 0 >. =/= <. 2 , M >. ) |
| 57 |
|
0ne1 |
|- 0 =/= 1 |
| 58 |
57
|
olci |
|- ( 1 =/= 1 \/ 0 =/= 1 ) |
| 59 |
9 12
|
opthne |
|- ( <. 1 , 0 >. =/= <. 1 , 1 >. <-> ( 1 =/= 1 \/ 0 =/= 1 ) ) |
| 60 |
58 59
|
mpbir |
|- <. 1 , 0 >. =/= <. 1 , 1 >. |
| 61 |
56 60
|
jctil |
|- ( M e. RR -> ( <. 1 , 0 >. =/= <. 1 , 1 >. /\ <. 1 , 0 >. =/= <. 2 , M >. ) ) |
| 62 |
61
|
orcd |
|- ( M e. RR -> ( ( <. 1 , 0 >. =/= <. 1 , 1 >. /\ <. 1 , 0 >. =/= <. 2 , M >. ) \/ ( <. 2 , M >. =/= <. 1 , 1 >. /\ <. 2 , M >. =/= <. 2 , M >. ) ) ) |
| 63 |
|
prneimg |
|- ( ( ( <. 1 , 0 >. e. _V /\ <. 2 , M >. e. _V ) /\ ( <. 1 , 1 >. e. _V /\ <. 2 , M >. e. _V ) ) -> ( ( ( <. 1 , 0 >. =/= <. 1 , 1 >. /\ <. 1 , 0 >. =/= <. 2 , M >. ) \/ ( <. 2 , M >. =/= <. 1 , 1 >. /\ <. 2 , M >. =/= <. 2 , M >. ) ) -> { <. 1 , 0 >. , <. 2 , M >. } =/= { <. 1 , 1 >. , <. 2 , M >. } ) ) |
| 64 |
52 62 63
|
mpsyl |
|- ( M e. RR -> { <. 1 , 0 >. , <. 2 , M >. } =/= { <. 1 , 1 >. , <. 2 , M >. } ) |
| 65 |
64 6 7
|
3netr4g |
|- ( M e. RR -> X =/= Y ) |
| 66 |
32 46 65
|
3jca |
|- ( M e. RR -> ( X e. P /\ Y e. P /\ X =/= Y ) ) |
| 67 |
66
|
adantl |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) -> ( X e. P /\ Y e. P /\ X =/= Y ) ) |
| 68 |
|
eqid |
|- ( ( Y ` 1 ) - ( X ` 1 ) ) = ( ( Y ` 1 ) - ( X ` 1 ) ) |
| 69 |
|
eqid |
|- ( ( Y ` 2 ) - ( X ` 2 ) ) = ( ( Y ` 2 ) - ( X ` 2 ) ) |
| 70 |
|
eqid |
|- ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) = ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) |
| 71 |
1 2 3 4 68 69 70
|
rrx2linest |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( X L Y ) = { p e. P | ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( p ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ) } ) |
| 72 |
67 71
|
syl |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) -> ( X L Y ) = { p e. P | ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( p ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ) } ) |
| 73 |
8 72
|
eqeq12d |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) -> ( G = ( X L Y ) <-> { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } = { p e. P | ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( p ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ) } ) ) |
| 74 |
|
rabbi |
|- ( A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( p ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ) ) <-> { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } = { p e. P | ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( p ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ) } ) |
| 75 |
7
|
fveq1i |
|- ( Y ` 1 ) = ( { <. 1 , 1 >. , <. 2 , M >. } ` 1 ) |
| 76 |
9 9 14
|
3pm3.2i |
|- ( 1 e. _V /\ 1 e. _V /\ 1 =/= 2 ) |
| 77 |
|
fvpr1g |
|- ( ( 1 e. _V /\ 1 e. _V /\ 1 =/= 2 ) -> ( { <. 1 , 1 >. , <. 2 , M >. } ` 1 ) = 1 ) |
| 78 |
76 77
|
mp1i |
|- ( M e. RR -> ( { <. 1 , 1 >. , <. 2 , M >. } ` 1 ) = 1 ) |
| 79 |
75 78
|
eqtrid |
|- ( M e. RR -> ( Y ` 1 ) = 1 ) |
| 80 |
6
|
fveq1i |
|- ( X ` 1 ) = ( { <. 1 , 0 >. , <. 2 , M >. } ` 1 ) |
| 81 |
9 12 14
|
3pm3.2i |
|- ( 1 e. _V /\ 0 e. _V /\ 1 =/= 2 ) |
| 82 |
|
fvpr1g |
|- ( ( 1 e. _V /\ 0 e. _V /\ 1 =/= 2 ) -> ( { <. 1 , 0 >. , <. 2 , M >. } ` 1 ) = 0 ) |
| 83 |
81 82
|
mp1i |
|- ( M e. RR -> ( { <. 1 , 0 >. , <. 2 , M >. } ` 1 ) = 0 ) |
| 84 |
80 83
|
eqtrid |
|- ( M e. RR -> ( X ` 1 ) = 0 ) |
| 85 |
79 84
|
oveq12d |
|- ( M e. RR -> ( ( Y ` 1 ) - ( X ` 1 ) ) = ( 1 - 0 ) ) |
| 86 |
|
1m0e1 |
|- ( 1 - 0 ) = 1 |
| 87 |
85 86
|
eqtrdi |
|- ( M e. RR -> ( ( Y ` 1 ) - ( X ` 1 ) ) = 1 ) |
| 88 |
87
|
oveq1d |
|- ( M e. RR -> ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( p ` 2 ) ) = ( 1 x. ( p ` 2 ) ) ) |
| 89 |
7
|
fveq1i |
|- ( Y ` 2 ) = ( { <. 1 , 1 >. , <. 2 , M >. } ` 2 ) |
| 90 |
|
fvpr2g |
|- ( ( 2 e. _V /\ M e. RR /\ 1 =/= 2 ) -> ( { <. 1 , 1 >. , <. 2 , M >. } ` 2 ) = M ) |
| 91 |
10 14 90
|
mp3an13 |
|- ( M e. RR -> ( { <. 1 , 1 >. , <. 2 , M >. } ` 2 ) = M ) |
| 92 |
89 91
|
eqtrid |
|- ( M e. RR -> ( Y ` 2 ) = M ) |
| 93 |
6
|
fveq1i |
|- ( X ` 2 ) = ( { <. 1 , 0 >. , <. 2 , M >. } ` 2 ) |
| 94 |
|
fvpr2g |
|- ( ( 2 e. _V /\ M e. RR /\ 1 =/= 2 ) -> ( { <. 1 , 0 >. , <. 2 , M >. } ` 2 ) = M ) |
| 95 |
10 14 94
|
mp3an13 |
|- ( M e. RR -> ( { <. 1 , 0 >. , <. 2 , M >. } ` 2 ) = M ) |
| 96 |
93 95
|
eqtrid |
|- ( M e. RR -> ( X ` 2 ) = M ) |
| 97 |
92 96
|
oveq12d |
|- ( M e. RR -> ( ( Y ` 2 ) - ( X ` 2 ) ) = ( M - M ) ) |
| 98 |
|
recn |
|- ( M e. RR -> M e. CC ) |
| 99 |
98
|
subidd |
|- ( M e. RR -> ( M - M ) = 0 ) |
| 100 |
97 99
|
eqtrd |
|- ( M e. RR -> ( ( Y ` 2 ) - ( X ` 2 ) ) = 0 ) |
| 101 |
100
|
oveq1d |
|- ( M e. RR -> ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) = ( 0 x. ( p ` 1 ) ) ) |
| 102 |
9 9 15 77
|
mp3an12i |
|- ( M e. RR -> ( { <. 1 , 1 >. , <. 2 , M >. } ` 1 ) = 1 ) |
| 103 |
75 102
|
eqtrid |
|- ( M e. RR -> ( Y ` 1 ) = 1 ) |
| 104 |
96 103
|
oveq12d |
|- ( M e. RR -> ( ( X ` 2 ) x. ( Y ` 1 ) ) = ( M x. 1 ) ) |
| 105 |
|
ax-1rid |
|- ( M e. RR -> ( M x. 1 ) = M ) |
| 106 |
104 105
|
eqtrd |
|- ( M e. RR -> ( ( X ` 2 ) x. ( Y ` 1 ) ) = M ) |
| 107 |
9 12 15 82
|
mp3an12i |
|- ( M e. RR -> ( { <. 1 , 0 >. , <. 2 , M >. } ` 1 ) = 0 ) |
| 108 |
80 107
|
eqtrid |
|- ( M e. RR -> ( X ` 1 ) = 0 ) |
| 109 |
108 92
|
oveq12d |
|- ( M e. RR -> ( ( X ` 1 ) x. ( Y ` 2 ) ) = ( 0 x. M ) ) |
| 110 |
98
|
mul02d |
|- ( M e. RR -> ( 0 x. M ) = 0 ) |
| 111 |
109 110
|
eqtrd |
|- ( M e. RR -> ( ( X ` 1 ) x. ( Y ` 2 ) ) = 0 ) |
| 112 |
106 111
|
oveq12d |
|- ( M e. RR -> ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) = ( M - 0 ) ) |
| 113 |
98
|
subid1d |
|- ( M e. RR -> ( M - 0 ) = M ) |
| 114 |
112 113
|
eqtrd |
|- ( M e. RR -> ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) = M ) |
| 115 |
101 114
|
oveq12d |
|- ( M e. RR -> ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ) = ( ( 0 x. ( p ` 1 ) ) + M ) ) |
| 116 |
88 115
|
eqeq12d |
|- ( M e. RR -> ( ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( p ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ) <-> ( 1 x. ( p ` 2 ) ) = ( ( 0 x. ( p ` 1 ) ) + M ) ) ) |
| 117 |
116
|
adantl |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) -> ( ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( p ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ) <-> ( 1 x. ( p ` 2 ) ) = ( ( 0 x. ( p ` 1 ) ) + M ) ) ) |
| 118 |
1 3
|
rrx2pyel |
|- ( p e. P -> ( p ` 2 ) e. RR ) |
| 119 |
118
|
recnd |
|- ( p e. P -> ( p ` 2 ) e. CC ) |
| 120 |
119
|
mullidd |
|- ( p e. P -> ( 1 x. ( p ` 2 ) ) = ( p ` 2 ) ) |
| 121 |
1 3
|
rrx2pxel |
|- ( p e. P -> ( p ` 1 ) e. RR ) |
| 122 |
121
|
recnd |
|- ( p e. P -> ( p ` 1 ) e. CC ) |
| 123 |
122
|
mul02d |
|- ( p e. P -> ( 0 x. ( p ` 1 ) ) = 0 ) |
| 124 |
123
|
oveq1d |
|- ( p e. P -> ( ( 0 x. ( p ` 1 ) ) + M ) = ( 0 + M ) ) |
| 125 |
120 124
|
eqeq12d |
|- ( p e. P -> ( ( 1 x. ( p ` 2 ) ) = ( ( 0 x. ( p ` 1 ) ) + M ) <-> ( p ` 2 ) = ( 0 + M ) ) ) |
| 126 |
117 125
|
sylan9bb |
|- ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ p e. P ) -> ( ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( p ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ) <-> ( p ` 2 ) = ( 0 + M ) ) ) |
| 127 |
126
|
bibi2d |
|- ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ p e. P ) -> ( ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( p ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ) ) <-> ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 2 ) = ( 0 + M ) ) ) ) |
| 128 |
127
|
ralbidva |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) -> ( A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( p ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ) ) <-> A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 2 ) = ( 0 + M ) ) ) ) |
| 129 |
98
|
addlidd |
|- ( M e. RR -> ( 0 + M ) = M ) |
| 130 |
129
|
adantr |
|- ( ( M e. RR /\ p e. P ) -> ( 0 + M ) = M ) |
| 131 |
130
|
eqeq2d |
|- ( ( M e. RR /\ p e. P ) -> ( ( p ` 2 ) = ( 0 + M ) <-> ( p ` 2 ) = M ) ) |
| 132 |
131
|
bibi2d |
|- ( ( M e. RR /\ p e. P ) -> ( ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 2 ) = ( 0 + M ) ) <-> ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 2 ) = M ) ) ) |
| 133 |
132
|
ralbidva |
|- ( M e. RR -> ( A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 2 ) = ( 0 + M ) ) <-> A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 2 ) = M ) ) ) |
| 134 |
133
|
adantl |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) -> ( A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 2 ) = ( 0 + M ) ) <-> A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 2 ) = M ) ) ) |
| 135 |
1 2 3 4 5 6 7
|
line2xlem |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) -> ( A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 2 ) = M ) -> ( A = 0 /\ M = ( C / B ) ) ) ) |
| 136 |
|
oveq1 |
|- ( A = 0 -> ( A x. ( p ` 1 ) ) = ( 0 x. ( p ` 1 ) ) ) |
| 137 |
136
|
adantr |
|- ( ( A = 0 /\ M = ( C / B ) ) -> ( A x. ( p ` 1 ) ) = ( 0 x. ( p ` 1 ) ) ) |
| 138 |
137
|
ad2antlr |
|- ( ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) /\ p e. P ) -> ( A x. ( p ` 1 ) ) = ( 0 x. ( p ` 1 ) ) ) |
| 139 |
123
|
adantl |
|- ( ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) /\ p e. P ) -> ( 0 x. ( p ` 1 ) ) = 0 ) |
| 140 |
138 139
|
eqtrd |
|- ( ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) /\ p e. P ) -> ( A x. ( p ` 1 ) ) = 0 ) |
| 141 |
140
|
oveq1d |
|- ( ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) /\ p e. P ) -> ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = ( 0 + ( B x. ( p ` 2 ) ) ) ) |
| 142 |
|
recn |
|- ( B e. RR -> B e. CC ) |
| 143 |
142
|
adantr |
|- ( ( B e. RR /\ B =/= 0 ) -> B e. CC ) |
| 144 |
143
|
3ad2ant2 |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> B e. CC ) |
| 145 |
144
|
ad3antrrr |
|- ( ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) /\ p e. P ) -> B e. CC ) |
| 146 |
119
|
adantl |
|- ( ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) /\ p e. P ) -> ( p ` 2 ) e. CC ) |
| 147 |
145 146
|
mulcld |
|- ( ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) /\ p e. P ) -> ( B x. ( p ` 2 ) ) e. CC ) |
| 148 |
147
|
addlidd |
|- ( ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) /\ p e. P ) -> ( 0 + ( B x. ( p ` 2 ) ) ) = ( B x. ( p ` 2 ) ) ) |
| 149 |
141 148
|
eqtrd |
|- ( ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) /\ p e. P ) -> ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = ( B x. ( p ` 2 ) ) ) |
| 150 |
149
|
eqeq1d |
|- ( ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) /\ p e. P ) -> ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( B x. ( p ` 2 ) ) = C ) ) |
| 151 |
|
simp3 |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> C e. RR ) |
| 152 |
151
|
recnd |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> C e. CC ) |
| 153 |
152
|
ad3antrrr |
|- ( ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) /\ p e. P ) -> C e. CC ) |
| 154 |
|
simpl |
|- ( ( B e. RR /\ B =/= 0 ) -> B e. RR ) |
| 155 |
154
|
recnd |
|- ( ( B e. RR /\ B =/= 0 ) -> B e. CC ) |
| 156 |
155
|
3ad2ant2 |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> B e. CC ) |
| 157 |
156
|
ad3antrrr |
|- ( ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) /\ p e. P ) -> B e. CC ) |
| 158 |
|
simp2r |
|- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> B =/= 0 ) |
| 159 |
158
|
ad3antrrr |
|- ( ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) /\ p e. P ) -> B =/= 0 ) |
| 160 |
153 157 146 159
|
divmuld |
|- ( ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) /\ p e. P ) -> ( ( C / B ) = ( p ` 2 ) <-> ( B x. ( p ` 2 ) ) = C ) ) |
| 161 |
|
simpr |
|- ( ( A = 0 /\ M = ( C / B ) ) -> M = ( C / B ) ) |
| 162 |
161
|
eqcomd |
|- ( ( A = 0 /\ M = ( C / B ) ) -> ( C / B ) = M ) |
| 163 |
162
|
ad2antlr |
|- ( ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) /\ p e. P ) -> ( C / B ) = M ) |
| 164 |
163
|
eqeq1d |
|- ( ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) /\ p e. P ) -> ( ( C / B ) = ( p ` 2 ) <-> M = ( p ` 2 ) ) ) |
| 165 |
150 160 164
|
3bitr2d |
|- ( ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) /\ p e. P ) -> ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> M = ( p ` 2 ) ) ) |
| 166 |
|
eqcom |
|- ( M = ( p ` 2 ) <-> ( p ` 2 ) = M ) |
| 167 |
165 166
|
bitrdi |
|- ( ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) /\ p e. P ) -> ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 2 ) = M ) ) |
| 168 |
167
|
ralrimiva |
|- ( ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) /\ ( A = 0 /\ M = ( C / B ) ) ) -> A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 2 ) = M ) ) |
| 169 |
168
|
ex |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) -> ( ( A = 0 /\ M = ( C / B ) ) -> A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 2 ) = M ) ) ) |
| 170 |
135 169
|
impbid |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) -> ( A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 2 ) = M ) <-> ( A = 0 /\ M = ( C / B ) ) ) ) |
| 171 |
128 134 170
|
3bitrd |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) -> ( A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( p ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ) ) <-> ( A = 0 /\ M = ( C / B ) ) ) ) |
| 172 |
74 171
|
bitr3id |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) -> ( { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } = { p e. P | ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( p ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ) } <-> ( A = 0 /\ M = ( C / B ) ) ) ) |
| 173 |
73 172
|
bitrd |
|- ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ M e. RR ) -> ( G = ( X L Y ) <-> ( A = 0 /\ M = ( C / B ) ) ) ) |