| Step |
Hyp |
Ref |
Expression |
| 1 |
|
line2.i |
|- I = { 1 , 2 } |
| 2 |
|
line2.e |
|- E = ( RR^ ` I ) |
| 3 |
|
line2.p |
|- P = ( RR ^m I ) |
| 4 |
|
line2.l |
|- L = ( LineM ` E ) |
| 5 |
|
line2.g |
|- G = { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } |
| 6 |
|
line2y.x |
|- X = { <. 1 , 0 >. , <. 2 , M >. } |
| 7 |
|
line2y.y |
|- Y = { <. 1 , 0 >. , <. 2 , N >. } |
| 8 |
5
|
a1i |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) -> G = { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } ) |
| 9 |
|
1ex |
|- 1 e. _V |
| 10 |
|
2ex |
|- 2 e. _V |
| 11 |
9 10
|
pm3.2i |
|- ( 1 e. _V /\ 2 e. _V ) |
| 12 |
|
c0ex |
|- 0 e. _V |
| 13 |
12
|
jctl |
|- ( M e. RR -> ( 0 e. _V /\ M e. RR ) ) |
| 14 |
|
1ne2 |
|- 1 =/= 2 |
| 15 |
14
|
a1i |
|- ( M e. RR -> 1 =/= 2 ) |
| 16 |
|
fprg |
|- ( ( ( 1 e. _V /\ 2 e. _V ) /\ ( 0 e. _V /\ M e. RR ) /\ 1 =/= 2 ) -> { <. 1 , 0 >. , <. 2 , M >. } : { 1 , 2 } --> { 0 , M } ) |
| 17 |
|
0red |
|- ( ( ( 1 e. _V /\ 2 e. _V ) /\ ( 0 e. _V /\ M e. RR ) /\ 1 =/= 2 ) -> 0 e. RR ) |
| 18 |
|
simp2r |
|- ( ( ( 1 e. _V /\ 2 e. _V ) /\ ( 0 e. _V /\ M e. RR ) /\ 1 =/= 2 ) -> M e. RR ) |
| 19 |
17 18
|
prssd |
|- ( ( ( 1 e. _V /\ 2 e. _V ) /\ ( 0 e. _V /\ M e. RR ) /\ 1 =/= 2 ) -> { 0 , M } C_ RR ) |
| 20 |
16 19
|
fssd |
|- ( ( ( 1 e. _V /\ 2 e. _V ) /\ ( 0 e. _V /\ M e. RR ) /\ 1 =/= 2 ) -> { <. 1 , 0 >. , <. 2 , M >. } : { 1 , 2 } --> RR ) |
| 21 |
11 13 15 20
|
mp3an2i |
|- ( M e. RR -> { <. 1 , 0 >. , <. 2 , M >. } : { 1 , 2 } --> RR ) |
| 22 |
1
|
feq2i |
|- ( { <. 1 , 0 >. , <. 2 , M >. } : I --> RR <-> { <. 1 , 0 >. , <. 2 , M >. } : { 1 , 2 } --> RR ) |
| 23 |
21 22
|
sylibr |
|- ( M e. RR -> { <. 1 , 0 >. , <. 2 , M >. } : I --> RR ) |
| 24 |
|
reex |
|- RR e. _V |
| 25 |
|
prex |
|- { 1 , 2 } e. _V |
| 26 |
1 25
|
eqeltri |
|- I e. _V |
| 27 |
24 26
|
elmap |
|- ( { <. 1 , 0 >. , <. 2 , M >. } e. ( RR ^m I ) <-> { <. 1 , 0 >. , <. 2 , M >. } : I --> RR ) |
| 28 |
23 27
|
sylibr |
|- ( M e. RR -> { <. 1 , 0 >. , <. 2 , M >. } e. ( RR ^m I ) ) |
| 29 |
28 6 3
|
3eltr4g |
|- ( M e. RR -> X e. P ) |
| 30 |
29
|
3ad2ant1 |
|- ( ( M e. RR /\ N e. RR /\ M =/= N ) -> X e. P ) |
| 31 |
12
|
jctl |
|- ( N e. RR -> ( 0 e. _V /\ N e. RR ) ) |
| 32 |
14
|
a1i |
|- ( N e. RR -> 1 =/= 2 ) |
| 33 |
|
fprg |
|- ( ( ( 1 e. _V /\ 2 e. _V ) /\ ( 0 e. _V /\ N e. RR ) /\ 1 =/= 2 ) -> { <. 1 , 0 >. , <. 2 , N >. } : { 1 , 2 } --> { 0 , N } ) |
| 34 |
11 31 32 33
|
mp3an2i |
|- ( N e. RR -> { <. 1 , 0 >. , <. 2 , N >. } : { 1 , 2 } --> { 0 , N } ) |
| 35 |
|
0re |
|- 0 e. RR |
| 36 |
|
prssi |
|- ( ( 0 e. RR /\ N e. RR ) -> { 0 , N } C_ RR ) |
| 37 |
35 36
|
mpan |
|- ( N e. RR -> { 0 , N } C_ RR ) |
| 38 |
34 37
|
fssd |
|- ( N e. RR -> { <. 1 , 0 >. , <. 2 , N >. } : { 1 , 2 } --> RR ) |
| 39 |
1
|
feq2i |
|- ( { <. 1 , 0 >. , <. 2 , N >. } : I --> RR <-> { <. 1 , 0 >. , <. 2 , N >. } : { 1 , 2 } --> RR ) |
| 40 |
38 39
|
sylibr |
|- ( N e. RR -> { <. 1 , 0 >. , <. 2 , N >. } : I --> RR ) |
| 41 |
24 26
|
pm3.2i |
|- ( RR e. _V /\ I e. _V ) |
| 42 |
|
elmapg |
|- ( ( RR e. _V /\ I e. _V ) -> ( { <. 1 , 0 >. , <. 2 , N >. } e. ( RR ^m I ) <-> { <. 1 , 0 >. , <. 2 , N >. } : I --> RR ) ) |
| 43 |
41 42
|
mp1i |
|- ( N e. RR -> ( { <. 1 , 0 >. , <. 2 , N >. } e. ( RR ^m I ) <-> { <. 1 , 0 >. , <. 2 , N >. } : I --> RR ) ) |
| 44 |
40 43
|
mpbird |
|- ( N e. RR -> { <. 1 , 0 >. , <. 2 , N >. } e. ( RR ^m I ) ) |
| 45 |
44 7 3
|
3eltr4g |
|- ( N e. RR -> Y e. P ) |
| 46 |
45
|
3ad2ant2 |
|- ( ( M e. RR /\ N e. RR /\ M =/= N ) -> Y e. P ) |
| 47 |
6
|
fveq1i |
|- ( X ` 1 ) = ( { <. 1 , 0 >. , <. 2 , M >. } ` 1 ) |
| 48 |
9 12 14
|
3pm3.2i |
|- ( 1 e. _V /\ 0 e. _V /\ 1 =/= 2 ) |
| 49 |
|
fvpr1g |
|- ( ( 1 e. _V /\ 0 e. _V /\ 1 =/= 2 ) -> ( { <. 1 , 0 >. , <. 2 , M >. } ` 1 ) = 0 ) |
| 50 |
48 49
|
mp1i |
|- ( ( M e. RR /\ N e. RR /\ M =/= N ) -> ( { <. 1 , 0 >. , <. 2 , M >. } ` 1 ) = 0 ) |
| 51 |
47 50
|
eqtrid |
|- ( ( M e. RR /\ N e. RR /\ M =/= N ) -> ( X ` 1 ) = 0 ) |
| 52 |
7
|
fveq1i |
|- ( Y ` 1 ) = ( { <. 1 , 0 >. , <. 2 , N >. } ` 1 ) |
| 53 |
|
fvpr1g |
|- ( ( 1 e. _V /\ 0 e. _V /\ 1 =/= 2 ) -> ( { <. 1 , 0 >. , <. 2 , N >. } ` 1 ) = 0 ) |
| 54 |
48 53
|
mp1i |
|- ( ( M e. RR /\ N e. RR /\ M =/= N ) -> ( { <. 1 , 0 >. , <. 2 , N >. } ` 1 ) = 0 ) |
| 55 |
52 54
|
eqtrid |
|- ( ( M e. RR /\ N e. RR /\ M =/= N ) -> ( Y ` 1 ) = 0 ) |
| 56 |
51 55
|
eqtr4d |
|- ( ( M e. RR /\ N e. RR /\ M =/= N ) -> ( X ` 1 ) = ( Y ` 1 ) ) |
| 57 |
|
simp3 |
|- ( ( M e. RR /\ N e. RR /\ M =/= N ) -> M =/= N ) |
| 58 |
6
|
fveq1i |
|- ( X ` 2 ) = ( { <. 1 , 0 >. , <. 2 , M >. } ` 2 ) |
| 59 |
|
simp1 |
|- ( ( M e. RR /\ N e. RR /\ M =/= N ) -> M e. RR ) |
| 60 |
14
|
a1i |
|- ( ( M e. RR /\ N e. RR /\ M =/= N ) -> 1 =/= 2 ) |
| 61 |
|
fvpr2g |
|- ( ( 2 e. _V /\ M e. RR /\ 1 =/= 2 ) -> ( { <. 1 , 0 >. , <. 2 , M >. } ` 2 ) = M ) |
| 62 |
10 59 60 61
|
mp3an2i |
|- ( ( M e. RR /\ N e. RR /\ M =/= N ) -> ( { <. 1 , 0 >. , <. 2 , M >. } ` 2 ) = M ) |
| 63 |
58 62
|
eqtrid |
|- ( ( M e. RR /\ N e. RR /\ M =/= N ) -> ( X ` 2 ) = M ) |
| 64 |
7
|
fveq1i |
|- ( Y ` 2 ) = ( { <. 1 , 0 >. , <. 2 , N >. } ` 2 ) |
| 65 |
|
simp2 |
|- ( ( M e. RR /\ N e. RR /\ M =/= N ) -> N e. RR ) |
| 66 |
|
fvpr2g |
|- ( ( 2 e. _V /\ N e. RR /\ 1 =/= 2 ) -> ( { <. 1 , 0 >. , <. 2 , N >. } ` 2 ) = N ) |
| 67 |
10 65 60 66
|
mp3an2i |
|- ( ( M e. RR /\ N e. RR /\ M =/= N ) -> ( { <. 1 , 0 >. , <. 2 , N >. } ` 2 ) = N ) |
| 68 |
64 67
|
eqtrid |
|- ( ( M e. RR /\ N e. RR /\ M =/= N ) -> ( Y ` 2 ) = N ) |
| 69 |
57 63 68
|
3netr4d |
|- ( ( M e. RR /\ N e. RR /\ M =/= N ) -> ( X ` 2 ) =/= ( Y ` 2 ) ) |
| 70 |
56 69
|
jca |
|- ( ( M e. RR /\ N e. RR /\ M =/= N ) -> ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) |
| 71 |
30 46 70
|
3jca |
|- ( ( M e. RR /\ N e. RR /\ M =/= N ) -> ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) ) |
| 72 |
71
|
adantl |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) -> ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) ) |
| 73 |
1 2 3 4
|
rrx2vlinest |
|- ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) -> ( X L Y ) = { p e. P | ( p ` 1 ) = ( X ` 1 ) } ) |
| 74 |
72 73
|
syl |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) -> ( X L Y ) = { p e. P | ( p ` 1 ) = ( X ` 1 ) } ) |
| 75 |
8 74
|
eqeq12d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) -> ( G = ( X L Y ) <-> { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } = { p e. P | ( p ` 1 ) = ( X ` 1 ) } ) ) |
| 76 |
48 49
|
ax-mp |
|- ( { <. 1 , 0 >. , <. 2 , M >. } ` 1 ) = 0 |
| 77 |
47 76
|
eqtri |
|- ( X ` 1 ) = 0 |
| 78 |
77
|
a1i |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) -> ( X ` 1 ) = 0 ) |
| 79 |
78
|
eqeq2d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) -> ( ( p ` 1 ) = ( X ` 1 ) <-> ( p ` 1 ) = 0 ) ) |
| 80 |
79
|
rabbidv |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) -> { p e. P | ( p ` 1 ) = ( X ` 1 ) } = { p e. P | ( p ` 1 ) = 0 } ) |
| 81 |
80
|
eqeq2d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) -> ( { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } = { p e. P | ( p ` 1 ) = ( X ` 1 ) } <-> { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } = { p e. P | ( p ` 1 ) = 0 } ) ) |
| 82 |
|
rabbi |
|- ( A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) <-> { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } = { p e. P | ( p ` 1 ) = 0 } ) |
| 83 |
1 3
|
line2ylem |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) -> ( A =/= 0 /\ B = 0 /\ C = 0 ) ) ) |
| 84 |
83
|
adantr |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) -> ( A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) -> ( A =/= 0 /\ B = 0 /\ C = 0 ) ) ) |
| 85 |
|
oveq1 |
|- ( B = 0 -> ( B x. ( p ` 2 ) ) = ( 0 x. ( p ` 2 ) ) ) |
| 86 |
85
|
3ad2ant2 |
|- ( ( A =/= 0 /\ B = 0 /\ C = 0 ) -> ( B x. ( p ` 2 ) ) = ( 0 x. ( p ` 2 ) ) ) |
| 87 |
86
|
oveq2d |
|- ( ( A =/= 0 /\ B = 0 /\ C = 0 ) -> ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = ( ( A x. ( p ` 1 ) ) + ( 0 x. ( p ` 2 ) ) ) ) |
| 88 |
|
simp3 |
|- ( ( A =/= 0 /\ B = 0 /\ C = 0 ) -> C = 0 ) |
| 89 |
87 88
|
eqeq12d |
|- ( ( A =/= 0 /\ B = 0 /\ C = 0 ) -> ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( ( A x. ( p ` 1 ) ) + ( 0 x. ( p ` 2 ) ) ) = 0 ) ) |
| 90 |
89
|
ad2antlr |
|- ( ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) /\ ( A =/= 0 /\ B = 0 /\ C = 0 ) ) /\ p e. P ) -> ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( ( A x. ( p ` 1 ) ) + ( 0 x. ( p ` 2 ) ) ) = 0 ) ) |
| 91 |
1 3
|
rrx2pyel |
|- ( p e. P -> ( p ` 2 ) e. RR ) |
| 92 |
91
|
recnd |
|- ( p e. P -> ( p ` 2 ) e. CC ) |
| 93 |
92
|
mul02d |
|- ( p e. P -> ( 0 x. ( p ` 2 ) ) = 0 ) |
| 94 |
93
|
adantl |
|- ( ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) /\ ( A =/= 0 /\ B = 0 /\ C = 0 ) ) /\ p e. P ) -> ( 0 x. ( p ` 2 ) ) = 0 ) |
| 95 |
94
|
oveq2d |
|- ( ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) /\ ( A =/= 0 /\ B = 0 /\ C = 0 ) ) /\ p e. P ) -> ( ( A x. ( p ` 1 ) ) + ( 0 x. ( p ` 2 ) ) ) = ( ( A x. ( p ` 1 ) ) + 0 ) ) |
| 96 |
|
simp1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. RR ) |
| 97 |
96
|
recnd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. CC ) |
| 98 |
97
|
ad3antrrr |
|- ( ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) /\ ( A =/= 0 /\ B = 0 /\ C = 0 ) ) /\ p e. P ) -> A e. CC ) |
| 99 |
1 3
|
rrx2pxel |
|- ( p e. P -> ( p ` 1 ) e. RR ) |
| 100 |
99
|
recnd |
|- ( p e. P -> ( p ` 1 ) e. CC ) |
| 101 |
100
|
adantl |
|- ( ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) /\ ( A =/= 0 /\ B = 0 /\ C = 0 ) ) /\ p e. P ) -> ( p ` 1 ) e. CC ) |
| 102 |
98 101
|
mulcld |
|- ( ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) /\ ( A =/= 0 /\ B = 0 /\ C = 0 ) ) /\ p e. P ) -> ( A x. ( p ` 1 ) ) e. CC ) |
| 103 |
102
|
addridd |
|- ( ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) /\ ( A =/= 0 /\ B = 0 /\ C = 0 ) ) /\ p e. P ) -> ( ( A x. ( p ` 1 ) ) + 0 ) = ( A x. ( p ` 1 ) ) ) |
| 104 |
95 103
|
eqtrd |
|- ( ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) /\ ( A =/= 0 /\ B = 0 /\ C = 0 ) ) /\ p e. P ) -> ( ( A x. ( p ` 1 ) ) + ( 0 x. ( p ` 2 ) ) ) = ( A x. ( p ` 1 ) ) ) |
| 105 |
104
|
eqeq1d |
|- ( ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) /\ ( A =/= 0 /\ B = 0 /\ C = 0 ) ) /\ p e. P ) -> ( ( ( A x. ( p ` 1 ) ) + ( 0 x. ( p ` 2 ) ) ) = 0 <-> ( A x. ( p ` 1 ) ) = 0 ) ) |
| 106 |
98 101
|
mul0ord |
|- ( ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) /\ ( A =/= 0 /\ B = 0 /\ C = 0 ) ) /\ p e. P ) -> ( ( A x. ( p ` 1 ) ) = 0 <-> ( A = 0 \/ ( p ` 1 ) = 0 ) ) ) |
| 107 |
|
eqneqall |
|- ( A = 0 -> ( A =/= 0 -> ( p ` 1 ) = 0 ) ) |
| 108 |
107
|
com12 |
|- ( A =/= 0 -> ( A = 0 -> ( p ` 1 ) = 0 ) ) |
| 109 |
108
|
3ad2ant1 |
|- ( ( A =/= 0 /\ B = 0 /\ C = 0 ) -> ( A = 0 -> ( p ` 1 ) = 0 ) ) |
| 110 |
109
|
ad2antlr |
|- ( ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) /\ ( A =/= 0 /\ B = 0 /\ C = 0 ) ) /\ p e. P ) -> ( A = 0 -> ( p ` 1 ) = 0 ) ) |
| 111 |
|
idd |
|- ( ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) /\ ( A =/= 0 /\ B = 0 /\ C = 0 ) ) /\ p e. P ) -> ( ( p ` 1 ) = 0 -> ( p ` 1 ) = 0 ) ) |
| 112 |
110 111
|
jaod |
|- ( ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) /\ ( A =/= 0 /\ B = 0 /\ C = 0 ) ) /\ p e. P ) -> ( ( A = 0 \/ ( p ` 1 ) = 0 ) -> ( p ` 1 ) = 0 ) ) |
| 113 |
|
olc |
|- ( ( p ` 1 ) = 0 -> ( A = 0 \/ ( p ` 1 ) = 0 ) ) |
| 114 |
112 113
|
impbid1 |
|- ( ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) /\ ( A =/= 0 /\ B = 0 /\ C = 0 ) ) /\ p e. P ) -> ( ( A = 0 \/ ( p ` 1 ) = 0 ) <-> ( p ` 1 ) = 0 ) ) |
| 115 |
106 114
|
bitrd |
|- ( ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) /\ ( A =/= 0 /\ B = 0 /\ C = 0 ) ) /\ p e. P ) -> ( ( A x. ( p ` 1 ) ) = 0 <-> ( p ` 1 ) = 0 ) ) |
| 116 |
90 105 115
|
3bitrd |
|- ( ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) /\ ( A =/= 0 /\ B = 0 /\ C = 0 ) ) /\ p e. P ) -> ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) |
| 117 |
116
|
ralrimiva |
|- ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) /\ ( A =/= 0 /\ B = 0 /\ C = 0 ) ) -> A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) |
| 118 |
117
|
ex |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) -> ( ( A =/= 0 /\ B = 0 /\ C = 0 ) -> A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) ) |
| 119 |
84 118
|
impbid |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) -> ( A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) <-> ( A =/= 0 /\ B = 0 /\ C = 0 ) ) ) |
| 120 |
82 119
|
bitr3id |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) -> ( { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } = { p e. P | ( p ` 1 ) = 0 } <-> ( A =/= 0 /\ B = 0 /\ C = 0 ) ) ) |
| 121 |
75 81 120
|
3bitrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) -> ( G = ( X L Y ) <-> ( A =/= 0 /\ B = 0 /\ C = 0 ) ) ) |