| Step |
Hyp |
Ref |
Expression |
| 1 |
|
line2ylem.i |
|- I = { 1 , 2 } |
| 2 |
|
line2ylem.p |
|- P = ( RR ^m I ) |
| 3 |
|
ianor |
|- ( -. ( ( A =/= 0 /\ B = 0 ) /\ C = 0 ) <-> ( -. ( A =/= 0 /\ B = 0 ) \/ -. C = 0 ) ) |
| 4 |
|
df-ne |
|- ( C =/= 0 <-> -. C = 0 ) |
| 5 |
|
0re |
|- 0 e. RR |
| 6 |
1 2
|
prelrrx2 |
|- ( ( 0 e. RR /\ 0 e. RR ) -> { <. 1 , 0 >. , <. 2 , 0 >. } e. P ) |
| 7 |
5 5 6
|
mp2an |
|- { <. 1 , 0 >. , <. 2 , 0 >. } e. P |
| 8 |
|
eqneqall |
|- ( C = 0 -> ( C =/= 0 -> -. 0 = 0 ) ) |
| 9 |
8
|
com12 |
|- ( C =/= 0 -> ( C = 0 -> -. 0 = 0 ) ) |
| 10 |
|
eqid |
|- 0 = 0 |
| 11 |
10
|
pm2.24i |
|- ( -. 0 = 0 -> C = 0 ) |
| 12 |
9 11
|
impbid1 |
|- ( C =/= 0 -> ( C = 0 <-> -. 0 = 0 ) ) |
| 13 |
12
|
adantl |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ C =/= 0 ) -> ( C = 0 <-> -. 0 = 0 ) ) |
| 14 |
|
xor3 |
|- ( -. ( C = 0 <-> 0 = 0 ) <-> ( C = 0 <-> -. 0 = 0 ) ) |
| 15 |
13 14
|
sylibr |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ C =/= 0 ) -> -. ( C = 0 <-> 0 = 0 ) ) |
| 16 |
|
simp1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. RR ) |
| 17 |
16
|
recnd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. CC ) |
| 18 |
17
|
mul01d |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A x. 0 ) = 0 ) |
| 19 |
|
simp2 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. RR ) |
| 20 |
19
|
recnd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. CC ) |
| 21 |
20
|
mul01d |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B x. 0 ) = 0 ) |
| 22 |
18 21
|
oveq12d |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A x. 0 ) + ( B x. 0 ) ) = ( 0 + 0 ) ) |
| 23 |
|
00id |
|- ( 0 + 0 ) = 0 |
| 24 |
22 23
|
eqtrdi |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A x. 0 ) + ( B x. 0 ) ) = 0 ) |
| 25 |
24
|
eqeq1d |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( ( A x. 0 ) + ( B x. 0 ) ) = C <-> 0 = C ) ) |
| 26 |
|
eqcom |
|- ( 0 = C <-> C = 0 ) |
| 27 |
25 26
|
bitrdi |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( ( A x. 0 ) + ( B x. 0 ) ) = C <-> C = 0 ) ) |
| 28 |
27
|
adantr |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ C =/= 0 ) -> ( ( ( A x. 0 ) + ( B x. 0 ) ) = C <-> C = 0 ) ) |
| 29 |
28
|
bibi1d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ C =/= 0 ) -> ( ( ( ( A x. 0 ) + ( B x. 0 ) ) = C <-> 0 = 0 ) <-> ( C = 0 <-> 0 = 0 ) ) ) |
| 30 |
15 29
|
mtbird |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ C =/= 0 ) -> -. ( ( ( A x. 0 ) + ( B x. 0 ) ) = C <-> 0 = 0 ) ) |
| 31 |
|
fveq1 |
|- ( p = { <. 1 , 0 >. , <. 2 , 0 >. } -> ( p ` 1 ) = ( { <. 1 , 0 >. , <. 2 , 0 >. } ` 1 ) ) |
| 32 |
|
1ex |
|- 1 e. _V |
| 33 |
|
c0ex |
|- 0 e. _V |
| 34 |
|
1ne2 |
|- 1 =/= 2 |
| 35 |
|
fvpr1g |
|- ( ( 1 e. _V /\ 0 e. _V /\ 1 =/= 2 ) -> ( { <. 1 , 0 >. , <. 2 , 0 >. } ` 1 ) = 0 ) |
| 36 |
32 33 34 35
|
mp3an |
|- ( { <. 1 , 0 >. , <. 2 , 0 >. } ` 1 ) = 0 |
| 37 |
31 36
|
eqtrdi |
|- ( p = { <. 1 , 0 >. , <. 2 , 0 >. } -> ( p ` 1 ) = 0 ) |
| 38 |
37
|
oveq2d |
|- ( p = { <. 1 , 0 >. , <. 2 , 0 >. } -> ( A x. ( p ` 1 ) ) = ( A x. 0 ) ) |
| 39 |
|
fveq1 |
|- ( p = { <. 1 , 0 >. , <. 2 , 0 >. } -> ( p ` 2 ) = ( { <. 1 , 0 >. , <. 2 , 0 >. } ` 2 ) ) |
| 40 |
|
2ex |
|- 2 e. _V |
| 41 |
|
fvpr2g |
|- ( ( 2 e. _V /\ 0 e. _V /\ 1 =/= 2 ) -> ( { <. 1 , 0 >. , <. 2 , 0 >. } ` 2 ) = 0 ) |
| 42 |
40 33 34 41
|
mp3an |
|- ( { <. 1 , 0 >. , <. 2 , 0 >. } ` 2 ) = 0 |
| 43 |
39 42
|
eqtrdi |
|- ( p = { <. 1 , 0 >. , <. 2 , 0 >. } -> ( p ` 2 ) = 0 ) |
| 44 |
43
|
oveq2d |
|- ( p = { <. 1 , 0 >. , <. 2 , 0 >. } -> ( B x. ( p ` 2 ) ) = ( B x. 0 ) ) |
| 45 |
38 44
|
oveq12d |
|- ( p = { <. 1 , 0 >. , <. 2 , 0 >. } -> ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = ( ( A x. 0 ) + ( B x. 0 ) ) ) |
| 46 |
45
|
eqeq1d |
|- ( p = { <. 1 , 0 >. , <. 2 , 0 >. } -> ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( ( A x. 0 ) + ( B x. 0 ) ) = C ) ) |
| 47 |
37
|
eqeq1d |
|- ( p = { <. 1 , 0 >. , <. 2 , 0 >. } -> ( ( p ` 1 ) = 0 <-> 0 = 0 ) ) |
| 48 |
46 47
|
bibi12d |
|- ( p = { <. 1 , 0 >. , <. 2 , 0 >. } -> ( ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) <-> ( ( ( A x. 0 ) + ( B x. 0 ) ) = C <-> 0 = 0 ) ) ) |
| 49 |
48
|
notbid |
|- ( p = { <. 1 , 0 >. , <. 2 , 0 >. } -> ( -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) <-> -. ( ( ( A x. 0 ) + ( B x. 0 ) ) = C <-> 0 = 0 ) ) ) |
| 50 |
49
|
rspcev |
|- ( ( { <. 1 , 0 >. , <. 2 , 0 >. } e. P /\ -. ( ( ( A x. 0 ) + ( B x. 0 ) ) = C <-> 0 = 0 ) ) -> E. p e. P -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) |
| 51 |
7 30 50
|
sylancr |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ C =/= 0 ) -> E. p e. P -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) |
| 52 |
51
|
expcom |
|- ( C =/= 0 -> ( ( A e. RR /\ B e. RR /\ C e. RR ) -> E. p e. P -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) ) |
| 53 |
4 52
|
sylbir |
|- ( -. C = 0 -> ( ( A e. RR /\ B e. RR /\ C e. RR ) -> E. p e. P -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) ) |
| 54 |
|
notnotb |
|- ( C = 0 <-> -. -. C = 0 ) |
| 55 |
|
ianor |
|- ( -. ( A =/= 0 /\ B = 0 ) <-> ( -. A =/= 0 \/ -. B = 0 ) ) |
| 56 |
|
df-ne |
|- ( B =/= 0 <-> -. B = 0 ) |
| 57 |
|
1red |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( B =/= 0 /\ C = 0 ) ) -> 1 e. RR ) |
| 58 |
16
|
adantr |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( B =/= 0 /\ C = 0 ) ) -> A e. RR ) |
| 59 |
58
|
renegcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( B =/= 0 /\ C = 0 ) ) -> -u A e. RR ) |
| 60 |
19
|
adantr |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( B =/= 0 /\ C = 0 ) ) -> B e. RR ) |
| 61 |
|
simprl |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( B =/= 0 /\ C = 0 ) ) -> B =/= 0 ) |
| 62 |
59 60 61
|
redivcld |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( B =/= 0 /\ C = 0 ) ) -> ( -u A / B ) e. RR ) |
| 63 |
1 2
|
prelrrx2 |
|- ( ( 1 e. RR /\ ( -u A / B ) e. RR ) -> { <. 1 , 1 >. , <. 2 , ( -u A / B ) >. } e. P ) |
| 64 |
57 62 63
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( B =/= 0 /\ C = 0 ) ) -> { <. 1 , 1 >. , <. 2 , ( -u A / B ) >. } e. P ) |
| 65 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 66 |
65
|
neii |
|- -. 1 = 0 |
| 67 |
10 66
|
2th |
|- ( 0 = 0 <-> -. 1 = 0 ) |
| 68 |
|
xor3 |
|- ( -. ( 0 = 0 <-> 1 = 0 ) <-> ( 0 = 0 <-> -. 1 = 0 ) ) |
| 69 |
67 68
|
mpbir |
|- -. ( 0 = 0 <-> 1 = 0 ) |
| 70 |
17
|
mulridd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A x. 1 ) = A ) |
| 71 |
70
|
adantr |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( B =/= 0 /\ C = 0 ) ) -> ( A x. 1 ) = A ) |
| 72 |
17
|
negcld |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> -u A e. CC ) |
| 73 |
72
|
adantr |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( B =/= 0 /\ C = 0 ) ) -> -u A e. CC ) |
| 74 |
20
|
adantr |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( B =/= 0 /\ C = 0 ) ) -> B e. CC ) |
| 75 |
73 74 61
|
divcan2d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( B =/= 0 /\ C = 0 ) ) -> ( B x. ( -u A / B ) ) = -u A ) |
| 76 |
71 75
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( B =/= 0 /\ C = 0 ) ) -> ( ( A x. 1 ) + ( B x. ( -u A / B ) ) ) = ( A + -u A ) ) |
| 77 |
17
|
negidd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A + -u A ) = 0 ) |
| 78 |
77
|
adantr |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( B =/= 0 /\ C = 0 ) ) -> ( A + -u A ) = 0 ) |
| 79 |
76 78
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( B =/= 0 /\ C = 0 ) ) -> ( ( A x. 1 ) + ( B x. ( -u A / B ) ) ) = 0 ) |
| 80 |
|
simprr |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( B =/= 0 /\ C = 0 ) ) -> C = 0 ) |
| 81 |
79 80
|
eqeq12d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( B =/= 0 /\ C = 0 ) ) -> ( ( ( A x. 1 ) + ( B x. ( -u A / B ) ) ) = C <-> 0 = 0 ) ) |
| 82 |
81
|
bibi1d |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( B =/= 0 /\ C = 0 ) ) -> ( ( ( ( A x. 1 ) + ( B x. ( -u A / B ) ) ) = C <-> 1 = 0 ) <-> ( 0 = 0 <-> 1 = 0 ) ) ) |
| 83 |
69 82
|
mtbiri |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( B =/= 0 /\ C = 0 ) ) -> -. ( ( ( A x. 1 ) + ( B x. ( -u A / B ) ) ) = C <-> 1 = 0 ) ) |
| 84 |
|
fveq1 |
|- ( p = { <. 1 , 1 >. , <. 2 , ( -u A / B ) >. } -> ( p ` 1 ) = ( { <. 1 , 1 >. , <. 2 , ( -u A / B ) >. } ` 1 ) ) |
| 85 |
|
fvpr1g |
|- ( ( 1 e. _V /\ 1 e. _V /\ 1 =/= 2 ) -> ( { <. 1 , 1 >. , <. 2 , ( -u A / B ) >. } ` 1 ) = 1 ) |
| 86 |
32 32 34 85
|
mp3an |
|- ( { <. 1 , 1 >. , <. 2 , ( -u A / B ) >. } ` 1 ) = 1 |
| 87 |
84 86
|
eqtrdi |
|- ( p = { <. 1 , 1 >. , <. 2 , ( -u A / B ) >. } -> ( p ` 1 ) = 1 ) |
| 88 |
87
|
oveq2d |
|- ( p = { <. 1 , 1 >. , <. 2 , ( -u A / B ) >. } -> ( A x. ( p ` 1 ) ) = ( A x. 1 ) ) |
| 89 |
|
fveq1 |
|- ( p = { <. 1 , 1 >. , <. 2 , ( -u A / B ) >. } -> ( p ` 2 ) = ( { <. 1 , 1 >. , <. 2 , ( -u A / B ) >. } ` 2 ) ) |
| 90 |
|
ovex |
|- ( -u A / B ) e. _V |
| 91 |
|
fvpr2g |
|- ( ( 2 e. _V /\ ( -u A / B ) e. _V /\ 1 =/= 2 ) -> ( { <. 1 , 1 >. , <. 2 , ( -u A / B ) >. } ` 2 ) = ( -u A / B ) ) |
| 92 |
40 90 34 91
|
mp3an |
|- ( { <. 1 , 1 >. , <. 2 , ( -u A / B ) >. } ` 2 ) = ( -u A / B ) |
| 93 |
89 92
|
eqtrdi |
|- ( p = { <. 1 , 1 >. , <. 2 , ( -u A / B ) >. } -> ( p ` 2 ) = ( -u A / B ) ) |
| 94 |
93
|
oveq2d |
|- ( p = { <. 1 , 1 >. , <. 2 , ( -u A / B ) >. } -> ( B x. ( p ` 2 ) ) = ( B x. ( -u A / B ) ) ) |
| 95 |
88 94
|
oveq12d |
|- ( p = { <. 1 , 1 >. , <. 2 , ( -u A / B ) >. } -> ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = ( ( A x. 1 ) + ( B x. ( -u A / B ) ) ) ) |
| 96 |
95
|
eqeq1d |
|- ( p = { <. 1 , 1 >. , <. 2 , ( -u A / B ) >. } -> ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( ( A x. 1 ) + ( B x. ( -u A / B ) ) ) = C ) ) |
| 97 |
87
|
eqeq1d |
|- ( p = { <. 1 , 1 >. , <. 2 , ( -u A / B ) >. } -> ( ( p ` 1 ) = 0 <-> 1 = 0 ) ) |
| 98 |
96 97
|
bibi12d |
|- ( p = { <. 1 , 1 >. , <. 2 , ( -u A / B ) >. } -> ( ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) <-> ( ( ( A x. 1 ) + ( B x. ( -u A / B ) ) ) = C <-> 1 = 0 ) ) ) |
| 99 |
98
|
notbid |
|- ( p = { <. 1 , 1 >. , <. 2 , ( -u A / B ) >. } -> ( -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) <-> -. ( ( ( A x. 1 ) + ( B x. ( -u A / B ) ) ) = C <-> 1 = 0 ) ) ) |
| 100 |
99
|
rspcev |
|- ( ( { <. 1 , 1 >. , <. 2 , ( -u A / B ) >. } e. P /\ -. ( ( ( A x. 1 ) + ( B x. ( -u A / B ) ) ) = C <-> 1 = 0 ) ) -> E. p e. P -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) |
| 101 |
64 83 100
|
syl2anc |
|- ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( B =/= 0 /\ C = 0 ) ) -> E. p e. P -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) |
| 102 |
101
|
expcom |
|- ( ( B =/= 0 /\ C = 0 ) -> ( ( A e. RR /\ B e. RR /\ C e. RR ) -> E. p e. P -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) ) |
| 103 |
102
|
ex |
|- ( B =/= 0 -> ( C = 0 -> ( ( A e. RR /\ B e. RR /\ C e. RR ) -> E. p e. P -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) ) ) |
| 104 |
56 103
|
sylbir |
|- ( -. B = 0 -> ( C = 0 -> ( ( A e. RR /\ B e. RR /\ C e. RR ) -> E. p e. P -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) ) ) |
| 105 |
|
notnotb |
|- ( B = 0 <-> -. -. B = 0 ) |
| 106 |
|
nne |
|- ( -. A =/= 0 <-> A = 0 ) |
| 107 |
106
|
bicomi |
|- ( A = 0 <-> -. A =/= 0 ) |
| 108 |
|
1re |
|- 1 e. RR |
| 109 |
1 2
|
prelrrx2 |
|- ( ( 1 e. RR /\ 1 e. RR ) -> { <. 1 , 1 >. , <. 2 , 1 >. } e. P ) |
| 110 |
108 108 109
|
mp2an |
|- { <. 1 , 1 >. , <. 2 , 1 >. } e. P |
| 111 |
|
oveq1 |
|- ( A = 0 -> ( A x. 1 ) = ( 0 x. 1 ) ) |
| 112 |
111
|
adantl |
|- ( ( B = 0 /\ A = 0 ) -> ( A x. 1 ) = ( 0 x. 1 ) ) |
| 113 |
|
ax-1cn |
|- 1 e. CC |
| 114 |
113
|
mul02i |
|- ( 0 x. 1 ) = 0 |
| 115 |
112 114
|
eqtrdi |
|- ( ( B = 0 /\ A = 0 ) -> ( A x. 1 ) = 0 ) |
| 116 |
|
oveq1 |
|- ( B = 0 -> ( B x. 1 ) = ( 0 x. 1 ) ) |
| 117 |
116
|
adantr |
|- ( ( B = 0 /\ A = 0 ) -> ( B x. 1 ) = ( 0 x. 1 ) ) |
| 118 |
117 114
|
eqtrdi |
|- ( ( B = 0 /\ A = 0 ) -> ( B x. 1 ) = 0 ) |
| 119 |
115 118
|
oveq12d |
|- ( ( B = 0 /\ A = 0 ) -> ( ( A x. 1 ) + ( B x. 1 ) ) = ( 0 + 0 ) ) |
| 120 |
119 23
|
eqtrdi |
|- ( ( B = 0 /\ A = 0 ) -> ( ( A x. 1 ) + ( B x. 1 ) ) = 0 ) |
| 121 |
|
id |
|- ( C = 0 -> C = 0 ) |
| 122 |
120 121
|
eqeqan12d |
|- ( ( ( B = 0 /\ A = 0 ) /\ C = 0 ) -> ( ( ( A x. 1 ) + ( B x. 1 ) ) = C <-> 0 = 0 ) ) |
| 123 |
122
|
bibi1d |
|- ( ( ( B = 0 /\ A = 0 ) /\ C = 0 ) -> ( ( ( ( A x. 1 ) + ( B x. 1 ) ) = C <-> 1 = 0 ) <-> ( 0 = 0 <-> 1 = 0 ) ) ) |
| 124 |
69 123
|
mtbiri |
|- ( ( ( B = 0 /\ A = 0 ) /\ C = 0 ) -> -. ( ( ( A x. 1 ) + ( B x. 1 ) ) = C <-> 1 = 0 ) ) |
| 125 |
|
fveq1 |
|- ( p = { <. 1 , 1 >. , <. 2 , 1 >. } -> ( p ` 1 ) = ( { <. 1 , 1 >. , <. 2 , 1 >. } ` 1 ) ) |
| 126 |
|
fvpr1g |
|- ( ( 1 e. _V /\ 1 e. _V /\ 1 =/= 2 ) -> ( { <. 1 , 1 >. , <. 2 , 1 >. } ` 1 ) = 1 ) |
| 127 |
32 32 34 126
|
mp3an |
|- ( { <. 1 , 1 >. , <. 2 , 1 >. } ` 1 ) = 1 |
| 128 |
125 127
|
eqtrdi |
|- ( p = { <. 1 , 1 >. , <. 2 , 1 >. } -> ( p ` 1 ) = 1 ) |
| 129 |
128
|
oveq2d |
|- ( p = { <. 1 , 1 >. , <. 2 , 1 >. } -> ( A x. ( p ` 1 ) ) = ( A x. 1 ) ) |
| 130 |
|
fveq1 |
|- ( p = { <. 1 , 1 >. , <. 2 , 1 >. } -> ( p ` 2 ) = ( { <. 1 , 1 >. , <. 2 , 1 >. } ` 2 ) ) |
| 131 |
|
fvpr2g |
|- ( ( 2 e. _V /\ 1 e. _V /\ 1 =/= 2 ) -> ( { <. 1 , 1 >. , <. 2 , 1 >. } ` 2 ) = 1 ) |
| 132 |
40 32 34 131
|
mp3an |
|- ( { <. 1 , 1 >. , <. 2 , 1 >. } ` 2 ) = 1 |
| 133 |
130 132
|
eqtrdi |
|- ( p = { <. 1 , 1 >. , <. 2 , 1 >. } -> ( p ` 2 ) = 1 ) |
| 134 |
133
|
oveq2d |
|- ( p = { <. 1 , 1 >. , <. 2 , 1 >. } -> ( B x. ( p ` 2 ) ) = ( B x. 1 ) ) |
| 135 |
129 134
|
oveq12d |
|- ( p = { <. 1 , 1 >. , <. 2 , 1 >. } -> ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = ( ( A x. 1 ) + ( B x. 1 ) ) ) |
| 136 |
135
|
eqeq1d |
|- ( p = { <. 1 , 1 >. , <. 2 , 1 >. } -> ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( ( A x. 1 ) + ( B x. 1 ) ) = C ) ) |
| 137 |
128
|
eqeq1d |
|- ( p = { <. 1 , 1 >. , <. 2 , 1 >. } -> ( ( p ` 1 ) = 0 <-> 1 = 0 ) ) |
| 138 |
136 137
|
bibi12d |
|- ( p = { <. 1 , 1 >. , <. 2 , 1 >. } -> ( ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) <-> ( ( ( A x. 1 ) + ( B x. 1 ) ) = C <-> 1 = 0 ) ) ) |
| 139 |
138
|
notbid |
|- ( p = { <. 1 , 1 >. , <. 2 , 1 >. } -> ( -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) <-> -. ( ( ( A x. 1 ) + ( B x. 1 ) ) = C <-> 1 = 0 ) ) ) |
| 140 |
139
|
rspcev |
|- ( ( { <. 1 , 1 >. , <. 2 , 1 >. } e. P /\ -. ( ( ( A x. 1 ) + ( B x. 1 ) ) = C <-> 1 = 0 ) ) -> E. p e. P -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) |
| 141 |
110 124 140
|
sylancr |
|- ( ( ( B = 0 /\ A = 0 ) /\ C = 0 ) -> E. p e. P -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) |
| 142 |
141
|
a1d |
|- ( ( ( B = 0 /\ A = 0 ) /\ C = 0 ) -> ( ( A e. RR /\ B e. RR /\ C e. RR ) -> E. p e. P -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) ) |
| 143 |
142
|
ex |
|- ( ( B = 0 /\ A = 0 ) -> ( C = 0 -> ( ( A e. RR /\ B e. RR /\ C e. RR ) -> E. p e. P -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) ) ) |
| 144 |
105 107 143
|
syl2anbr |
|- ( ( -. -. B = 0 /\ -. A =/= 0 ) -> ( C = 0 -> ( ( A e. RR /\ B e. RR /\ C e. RR ) -> E. p e. P -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) ) ) |
| 145 |
104 144
|
jaoi3 |
|- ( ( -. B = 0 \/ -. A =/= 0 ) -> ( C = 0 -> ( ( A e. RR /\ B e. RR /\ C e. RR ) -> E. p e. P -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) ) ) |
| 146 |
145
|
orcoms |
|- ( ( -. A =/= 0 \/ -. B = 0 ) -> ( C = 0 -> ( ( A e. RR /\ B e. RR /\ C e. RR ) -> E. p e. P -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) ) ) |
| 147 |
55 146
|
sylbi |
|- ( -. ( A =/= 0 /\ B = 0 ) -> ( C = 0 -> ( ( A e. RR /\ B e. RR /\ C e. RR ) -> E. p e. P -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) ) ) |
| 148 |
147
|
com12 |
|- ( C = 0 -> ( -. ( A =/= 0 /\ B = 0 ) -> ( ( A e. RR /\ B e. RR /\ C e. RR ) -> E. p e. P -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) ) ) |
| 149 |
54 148
|
sylbir |
|- ( -. -. C = 0 -> ( -. ( A =/= 0 /\ B = 0 ) -> ( ( A e. RR /\ B e. RR /\ C e. RR ) -> E. p e. P -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) ) ) |
| 150 |
149
|
imp |
|- ( ( -. -. C = 0 /\ -. ( A =/= 0 /\ B = 0 ) ) -> ( ( A e. RR /\ B e. RR /\ C e. RR ) -> E. p e. P -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) ) |
| 151 |
53 150
|
jaoi3 |
|- ( ( -. C = 0 \/ -. ( A =/= 0 /\ B = 0 ) ) -> ( ( A e. RR /\ B e. RR /\ C e. RR ) -> E. p e. P -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) ) |
| 152 |
151
|
orcoms |
|- ( ( -. ( A =/= 0 /\ B = 0 ) \/ -. C = 0 ) -> ( ( A e. RR /\ B e. RR /\ C e. RR ) -> E. p e. P -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) ) |
| 153 |
152
|
com12 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( -. ( A =/= 0 /\ B = 0 ) \/ -. C = 0 ) -> E. p e. P -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) ) |
| 154 |
3 153
|
biimtrid |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( -. ( ( A =/= 0 /\ B = 0 ) /\ C = 0 ) -> E. p e. P -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) ) |
| 155 |
|
rexnal |
|- ( E. p e. P -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) <-> -. A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) |
| 156 |
154 155
|
imbitrdi |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( -. ( ( A =/= 0 /\ B = 0 ) /\ C = 0 ) -> -. A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) ) |
| 157 |
156
|
con4d |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) -> ( ( A =/= 0 /\ B = 0 ) /\ C = 0 ) ) ) |
| 158 |
|
df-3an |
|- ( ( A =/= 0 /\ B = 0 /\ C = 0 ) <-> ( ( A =/= 0 /\ B = 0 ) /\ C = 0 ) ) |
| 159 |
157 158
|
imbitrrdi |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) -> ( A =/= 0 /\ B = 0 /\ C = 0 ) ) ) |