| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							isline2.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							isline2.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							isline2.n | 
							 |-  N = ( Lines ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							isline2.m | 
							 |-  M = ( pmap ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							simpl1 | 
							 |-  ( ( ( K e. Lat /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> K e. Lat )  | 
						
						
							| 6 | 
							
								
							 | 
							simpl2 | 
							 |-  ( ( ( K e. Lat /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> P e. A )  | 
						
						
							| 7 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` K ) = ( Base ` K )  | 
						
						
							| 8 | 
							
								7 2
							 | 
							atbase | 
							 |-  ( P e. A -> P e. ( Base ` K ) )  | 
						
						
							| 9 | 
							
								6 8
							 | 
							syl | 
							 |-  ( ( ( K e. Lat /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> P e. ( Base ` K ) )  | 
						
						
							| 10 | 
							
								
							 | 
							simpl3 | 
							 |-  ( ( ( K e. Lat /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> Q e. A )  | 
						
						
							| 11 | 
							
								7 2
							 | 
							atbase | 
							 |-  ( Q e. A -> Q e. ( Base ` K ) )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							syl | 
							 |-  ( ( ( K e. Lat /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> Q e. ( Base ` K ) )  | 
						
						
							| 13 | 
							
								7 1
							 | 
							latjcl | 
							 |-  ( ( K e. Lat /\ P e. ( Base ` K ) /\ Q e. ( Base ` K ) ) -> ( P .\/ Q ) e. ( Base ` K ) )  | 
						
						
							| 14 | 
							
								5 9 12 13
							 | 
							syl3anc | 
							 |-  ( ( ( K e. Lat /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> ( P .\/ Q ) e. ( Base ` K ) )  | 
						
						
							| 15 | 
							
								
							 | 
							eqid | 
							 |-  ( le ` K ) = ( le ` K )  | 
						
						
							| 16 | 
							
								7 15 2 4
							 | 
							pmapval | 
							 |-  ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) ) -> ( M ` ( P .\/ Q ) ) = { r e. A | r ( le ` K ) ( P .\/ Q ) } ) | 
						
						
							| 17 | 
							
								5 14 16
							 | 
							syl2anc | 
							 |-  ( ( ( K e. Lat /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> ( M ` ( P .\/ Q ) ) = { r e. A | r ( le ` K ) ( P .\/ Q ) } ) | 
						
						
							| 18 | 
							
								
							 | 
							eqid | 
							 |-  { r e. A | r ( le ` K ) ( P .\/ Q ) } = { r e. A | r ( le ` K ) ( P .\/ Q ) } | 
						
						
							| 19 | 
							
								15 1 2 3
							 | 
							islinei | 
							 |-  ( ( ( K e. Lat /\ P e. A /\ Q e. A ) /\ ( P =/= Q /\ { r e. A | r ( le ` K ) ( P .\/ Q ) } = { r e. A | r ( le ` K ) ( P .\/ Q ) } ) ) -> { r e. A | r ( le ` K ) ( P .\/ Q ) } e. N ) | 
						
						
							| 20 | 
							
								18 19
							 | 
							mpanr2 | 
							 |-  ( ( ( K e. Lat /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> { r e. A | r ( le ` K ) ( P .\/ Q ) } e. N ) | 
						
						
							| 21 | 
							
								17 20
							 | 
							eqeltrd | 
							 |-  ( ( ( K e. Lat /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> ( M ` ( P .\/ Q ) ) e. N )  |