Step |
Hyp |
Ref |
Expression |
1 |
|
linepsubcl.n |
|- N = ( Lines ` K ) |
2 |
|
linepsubcl.c |
|- C = ( PSubCl ` K ) |
3 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
4 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
5 |
|
eqid |
|- ( Atoms ` K ) = ( Atoms ` K ) |
6 |
|
eqid |
|- ( pmap ` K ) = ( pmap ` K ) |
7 |
4 5 1 6
|
isline2 |
|- ( K e. Lat -> ( X e. N <-> E. p e. ( Atoms ` K ) E. q e. ( Atoms ` K ) ( p =/= q /\ X = ( ( pmap ` K ) ` ( p ( join ` K ) q ) ) ) ) ) |
8 |
3 7
|
syl |
|- ( K e. HL -> ( X e. N <-> E. p e. ( Atoms ` K ) E. q e. ( Atoms ` K ) ( p =/= q /\ X = ( ( pmap ` K ) ` ( p ( join ` K ) q ) ) ) ) ) |
9 |
3
|
adantr |
|- ( ( K e. HL /\ ( p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) ) -> K e. Lat ) |
10 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
11 |
10 5
|
atbase |
|- ( p e. ( Atoms ` K ) -> p e. ( Base ` K ) ) |
12 |
11
|
ad2antrl |
|- ( ( K e. HL /\ ( p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) ) -> p e. ( Base ` K ) ) |
13 |
10 5
|
atbase |
|- ( q e. ( Atoms ` K ) -> q e. ( Base ` K ) ) |
14 |
13
|
ad2antll |
|- ( ( K e. HL /\ ( p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) ) -> q e. ( Base ` K ) ) |
15 |
10 4
|
latjcl |
|- ( ( K e. Lat /\ p e. ( Base ` K ) /\ q e. ( Base ` K ) ) -> ( p ( join ` K ) q ) e. ( Base ` K ) ) |
16 |
9 12 14 15
|
syl3anc |
|- ( ( K e. HL /\ ( p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) ) -> ( p ( join ` K ) q ) e. ( Base ` K ) ) |
17 |
10 6 2
|
pmapsubclN |
|- ( ( K e. HL /\ ( p ( join ` K ) q ) e. ( Base ` K ) ) -> ( ( pmap ` K ) ` ( p ( join ` K ) q ) ) e. C ) |
18 |
16 17
|
syldan |
|- ( ( K e. HL /\ ( p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) ) -> ( ( pmap ` K ) ` ( p ( join ` K ) q ) ) e. C ) |
19 |
|
eleq1a |
|- ( ( ( pmap ` K ) ` ( p ( join ` K ) q ) ) e. C -> ( X = ( ( pmap ` K ) ` ( p ( join ` K ) q ) ) -> X e. C ) ) |
20 |
18 19
|
syl |
|- ( ( K e. HL /\ ( p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) ) -> ( X = ( ( pmap ` K ) ` ( p ( join ` K ) q ) ) -> X e. C ) ) |
21 |
20
|
adantld |
|- ( ( K e. HL /\ ( p e. ( Atoms ` K ) /\ q e. ( Atoms ` K ) ) ) -> ( ( p =/= q /\ X = ( ( pmap ` K ) ` ( p ( join ` K ) q ) ) ) -> X e. C ) ) |
22 |
21
|
rexlimdvva |
|- ( K e. HL -> ( E. p e. ( Atoms ` K ) E. q e. ( Atoms ` K ) ( p =/= q /\ X = ( ( pmap ` K ) ` ( p ( join ` K ) q ) ) ) -> X e. C ) ) |
23 |
8 22
|
sylbid |
|- ( K e. HL -> ( X e. N -> X e. C ) ) |
24 |
23
|
imp |
|- ( ( K e. HL /\ X e. N ) -> X e. C ) |