Step |
Hyp |
Ref |
Expression |
1 |
|
lineq.a |
|- ( ph -> A e. CC ) |
2 |
|
lineq.b |
|- ( ph -> B e. CC ) |
3 |
|
lineq.x |
|- ( ph -> X e. CC ) |
4 |
|
lineq.y |
|- ( ph -> Y e. CC ) |
5 |
|
lineq.n0 |
|- ( ph -> A =/= 0 ) |
6 |
1 3
|
mulcld |
|- ( ph -> ( A x. X ) e. CC ) |
7 |
6 2 4
|
addlsub |
|- ( ph -> ( ( ( A x. X ) + B ) = Y <-> ( A x. X ) = ( Y - B ) ) ) |
8 |
4 2
|
subcld |
|- ( ph -> ( Y - B ) e. CC ) |
9 |
1 3 8 5
|
rdiv |
|- ( ph -> ( ( A x. X ) = ( Y - B ) <-> X = ( ( Y - B ) / A ) ) ) |
10 |
7 9
|
bitrd |
|- ( ph -> ( ( ( A x. X ) + B ) = Y <-> X = ( ( Y - B ) / A ) ) ) |